These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22315551)

  • 1. Ultramicroelectrode array based sensors: a promising analytical tool for environmental monitoring.
    Orozco J; Fernández-Sánchez C; Jiménez-Jorquera C
    Sensors (Basel); 2010; 10(1):475-90. PubMed ID: 22315551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microelectrode arrays with overlapped diffusion layers as electroanalytical detectors: theory and basic applications.
    Tomčík P
    Sensors (Basel); 2013 Oct; 13(10):13659-84. PubMed ID: 24152927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Underpotential deposition-anodic stripping voltammetric detection of copper at gold nanoparticle-modified ultramicroelectrode arrays.
    Orozco J; Fernández-Sánchez C; Jiménez-Jorquera C
    Environ Sci Technol; 2008 Jul; 42(13):4877-82. PubMed ID: 18678020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disposable microfluidic devices: fabrication, function, and application.
    Fiorini GS; Chiu DT
    Biotechniques; 2005 Mar; 38(3):429-46. PubMed ID: 15786809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multichannel boron doped nanocrystalline diamond ultramicroelectrode arrays: design, fabrication and characterization.
    Kiran R; Rousseau L; Lissorgues G; Scorsone E; Bongrain A; Yvert B; Picaud S; Mailley P; Bergonzo P
    Sensors (Basel); 2012; 12(6):7669-81. PubMed ID: 22969367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G3 assisted rational design of chemical sensor array using carbonitrile neutral receptors.
    Rosli AN; Bakar MA; Manan NS; Woi PM; Lee VS; Zain SM; Ahmad MR; Alias Y
    Sensors (Basel); 2013 Oct; 13(10):13835-60. PubMed ID: 24129020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple and fast method for fabrication of endoscopic implantable sensor arrays.
    Tahirbegi IB; Alvira M; Mir M; Samitier J
    Sensors (Basel); 2014 Jun; 14(7):11416-26. PubMed ID: 24971473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disposable screen printed electrochemical sensors: tools for environmental monitoring.
    Hayat A; Marty JL
    Sensors (Basel); 2014 Jun; 14(6):10432-53. PubMed ID: 24932865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of nanomaterials in environmental analysis and monitoring.
    Liang M; Guo LH
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2283-9. PubMed ID: 19437965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time electrochemical monitoring: toward green analytical chemistry.
    Wang J
    Acc Chem Res; 2002 Sep; 35(9):811-6. PubMed ID: 12234211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Print-and-peel fabrication of microelectrodes.
    Hong C; Bao D; Thomas MS; Clift JM; Vullev VI
    Langmuir; 2008 Aug; 24(16):8439-42. PubMed ID: 18646733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro- and nanomechanical sensors for environmental, chemical, and biological detection.
    Waggoner PS; Craighead HG
    Lab Chip; 2007 Oct; 7(10):1238-55. PubMed ID: 17896006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ISFET based microsensors for environmental monitoring.
    Jimenez-Jorquera C; Orozco J; Baldi A
    Sensors (Basel); 2010; 10(1):61-83. PubMed ID: 22315527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical microsensor based on gold nanoparticles modified electrode for total phosphorus determinations in water.
    Bai Y; Tong J; Wang J; Bian C; Xia S
    IET Nanobiotechnol; 2014 Mar; 8(1):31-6. PubMed ID: 24888189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanoparticle-modified ultramicroelectrode arrays for biosensing: a comparative assessment.
    Orozco J; Jiménez-Jorquera C; Fernández-Sánchez C
    Bioelectrochemistry; 2009 Jun; 75(2):176-81. PubMed ID: 19401273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why 'the bigger the better' is not always the case when utilising microelectrode arrays: high density vs. low density arrays for the electroanalytical sensing of chromium(VI).
    Hood SJ; Kampouris DK; Kadara RO; Jenkinson N; del Campo FJ; Muñoz FX; Banks CE
    Analyst; 2009 Nov; 134(11):2301-5. PubMed ID: 19838419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imprinting of molecular recognition sites combined with π-donor-acceptor interactions using bis-aniline-crosslinked Au-CdSe/ZnS nanoparticles array on electrodes: Development of electrochemiluminescence sensor for the ultrasensitive and selective detection of 2-methyl-4-chlorophenoxyacetic acid.
    Yang Y; Fang G; Wang X; Liu G; Wang S
    Biosens Bioelectron; 2016 Mar; 77():1134-43. PubMed ID: 26569444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking down a killer.
    Kuiawa D
    Occup Health Saf; 2005 May; 74(5):92, 94. PubMed ID: 15986904
    [No Abstract]   [Full Text] [Related]  

  • 19. Micro- and nano-structured metal oxides based chemical sensors: an overview.
    Batra AK; Chilvery AK; Guggilla P; Aggarwal M; Currie JR
    J Nanosci Nanotechnol; 2014 Feb; 14(2):2065-85. PubMed ID: 24749474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic device for the automated electrical readout of low-density glass-slide microarrays.
    Díaz-González M; Salvador JP; Bonilla D; Marco MP; Fernández-Sánchez C; Baldi A
    Biosens Bioelectron; 2015 Dec; 74():698-704. PubMed ID: 26210466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.