These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22315988)

  • 1. Effects of parameter manipulations on spread of excitation measured with electrically-evoked compound action potentials.
    van der Beek FB; Briaire JJ; Frijns JH
    Int J Audiol; 2012 Jun; 51(6):465-74. PubMed ID: 22315988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spread of excitation and channel interaction in single- and dual-electrode cochlear implant stimulation.
    Snel-Bongers J; Briaire JJ; Vanpoucke FJ; Frijns JH
    Ear Hear; 2012; 33(3):367-76. PubMed ID: 22048258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using evoked compound action potentials to assess activation of electrodes and predict C-levels in the Tempo+ cochlear implant speech processor.
    Alvarez I; de la Torre A; Sainz M; Roldán C; Schoesser H; Spitzer P
    Ear Hear; 2010 Feb; 31(1):134-45. PubMed ID: 19838116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting predicted speech intelligibility with cochlear implants in an auditory model for electrical stimulation.
    Fredelake S; Hohmann V
    Hear Res; 2012 May; 287(1-2):76-90. PubMed ID: 22465681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically evoked amplitude modulation following response in cochlear implant candidates: comparison with auditory nerve response telemetry, subjective electrical stimulation, and speech perception.
    Hirschfelder A; Gräbel S; Olze H
    Otol Neurotol; 2012 Aug; 33(6):968-75. PubMed ID: 22772009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological spread of excitation and pitch perception for dual and single electrodes using the Nucleus Freedom cochlear implant.
    Busby PA; Battmer RD; Pesch J
    Ear Hear; 2008 Dec; 29(6):853-64. PubMed ID: 18633324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation patterns of simultaneous and sequential dual-electrode stimulation in cochlear implant recipients.
    Saoji AA; Litvak LM; Hughes ML
    Ear Hear; 2009 Oct; 30(5):559-67. PubMed ID: 19617837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Algorithm to Derive Spread of Excitation Based on Deconvolution.
    Biesheuvel JD; Briaire JJ; Frijns JH
    Ear Hear; 2016; 37(5):572-81. PubMed ID: 27015548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forward masking patterns by low and high-rate stimulation in cochlear implant users: Differences in masking effectiveness and spread of neural excitation.
    Zhou N; Dong L; Dixon S
    Hear Res; 2020 Apr; 389():107921. PubMed ID: 32097828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binaural interference in bilateral cochlear-implant listeners.
    Best V; Laback B; Majdak P
    J Acoust Soc Am; 2011 Nov; 130(5):2939-50. PubMed ID: 22087922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the fine structure processing (FSP) strategy and the CIS strategy used in the MED-EL cochlear implant system: speech intelligibility and music sound quality.
    Magnusson L
    Int J Audiol; 2011 Apr; 50(4):279-87. PubMed ID: 21190508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ECAP spread of excitation with virtual channels and physical electrodes.
    Hughes ML; Stille LJ; Baudhuin JL; Goehring JL
    Hear Res; 2013 Dec; 306():93-103. PubMed ID: 24095669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parental perspectives on decision-making and outcomes in pediatric bilateral cochlear implantation.
    Fitzpatrick EM; Jacques J; Neuss D
    Int J Audiol; 2011 Oct; 50(10):679-87. PubMed ID: 21812634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting benefits from contralateral implants and hearing aids in cochlear implant users.
    van Hoesel RJ
    Hear Res; 2012 Jun; 288(1-2):100-13. PubMed ID: 22226928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term outcomes of cochlear implantation in the preschool years: from elementary grades to high school.
    Geers A; Tobey E; Moog J; Brenner C
    Int J Audiol; 2008 Nov; 47 Suppl 2():S21-30. PubMed ID: 19012109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons between neural response imaging thresholds, electrically evoked auditory reflex thresholds and most comfortable loudness levels in CII bionic ear users with HiResolution sound processing strategies.
    Han DM; Chen XQ; Zhao XT; Kong Y; Li YX; Liu S; Liu B; Mo LY
    Acta Otolaryngol; 2005 Jul; 125(7):732-5. PubMed ID: 16012035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mental health of deaf adolescents with cochlear implants compared to their hearing peers.
    Huber M; Kipman U
    Int J Audiol; 2011 Mar; 50(3):146-54. PubMed ID: 21309643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experiences of the use of FOX, an intelligent agent, for programming cochlear implant sound processors in new users.
    Vaerenberg B; Govaerts PJ; de Ceulaer G; Daemers K; Schauwers K
    Int J Audiol; 2011 Jan; 50(1):50-8. PubMed ID: 21091083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speech intelligibility as a predictor of cochlear implant outcome in prelingually deafened adults.
    van Dijkhuizen JN; Beers M; Boermans PP; Briaire JJ; Frijns JH
    Ear Hear; 2011; 32(4):445-58. PubMed ID: 21258238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Psychophysical versus physiological spatial forward masking and the relation to speech perception in cochlear implants.
    Hughes ML; Stille LJ
    Ear Hear; 2008 Jun; 29(3):435-52. PubMed ID: 18344869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.