These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 22316101)
1. Inductively coupled microfluidic pressure meter for in vivo monitoring of cerebrospinal fluid shunt function. Song SH; Gillies GT; Begley MR; Utz M; Broaddus WC J Med Eng Technol; 2012 Apr; 36(3):156-62. PubMed ID: 22316101 [TBL] [Abstract][Full Text] [Related]
2. In Vitro and in vivo characterization of wireless and passive micro system enabling gastrointestinal pressure monitoring. Shi Q; Wang J; Chen D; Chen J; Li J; Bao K Biomed Microdevices; 2014 Dec; 16(6):859-68. PubMed ID: 25119603 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves. Araci IE; Quake SR Lab Chip; 2012 Aug; 12(16):2803-6. PubMed ID: 22714259 [TBL] [Abstract][Full Text] [Related]
4. Carbon nanotube-sensor-integrated microfluidic platform for real-time chemical concentration detection. Yang L; Li M; Qu Y; Dong Z; Li WJ Electrophoresis; 2009 Sep; 30(18):3198-205. PubMed ID: 19722205 [TBL] [Abstract][Full Text] [Related]
5. MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing. Pang C; Bae H; Gupta A; Bryden K; Yu M Opt Express; 2013 Sep; 21(19):21829-39. PubMed ID: 24104075 [TBL] [Abstract][Full Text] [Related]
6. Design of a wireless electrochemical valve. Bouffier L; Kuhn A Nanoscale; 2013 Feb; 5(4):1305-9. PubMed ID: 23138889 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices. Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154 [TBL] [Abstract][Full Text] [Related]
8. A wireless passive pressure microsensor fabricated in HTCC MEMS technology for harsh environments. Tan Q; Kang H; Xiong J; Qin L; Zhang W; Li C; Ding L; Zhang X; Yang M Sensors (Basel); 2013 Aug; 13(8):9896-908. PubMed ID: 23917261 [TBL] [Abstract][Full Text] [Related]
9. Integration of Low-Power ASIC and MEMS Sensors for Monitoring Gastrointestinal Tract Using a Wireless Capsule System. Arefin MS; Redoute JM; Yuce MR IEEE J Biomed Health Inform; 2018 Jan; 22(1):87-97. PubMed ID: 28391213 [TBL] [Abstract][Full Text] [Related]
10. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications. Park J; Kim JK; Patil SJ; Park JK; Park S; Lee DW Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27271619 [TBL] [Abstract][Full Text] [Related]
11. Hydrogel-based microsensors for wireless chemical monitoring. Lei M; Baldi A; Nuxoll E; Siegel RA; Ziaie B Biomed Microdevices; 2009 Jun; 11(3):529-38. PubMed ID: 18335316 [TBL] [Abstract][Full Text] [Related]
13. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Kim J; Surapaneni R; Gale BK Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251 [TBL] [Abstract][Full Text] [Related]
14. Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions. Ashraf MW; Tayyaba S; Nisar A; Afzulpurkar N; Bodhale DW; Lomas T; Poyai A; Tuantranont A Cardiovasc Eng; 2010 Sep; 10(3):91-108. PubMed ID: 20730492 [TBL] [Abstract][Full Text] [Related]
15. Multiplex pressure measurement in microsystems using volume displacement of particle suspensions. Chung K; Lee H; Lu H Lab Chip; 2009 Dec; 9(23):3345-53. PubMed ID: 19904399 [TBL] [Abstract][Full Text] [Related]