These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 22316235)

  • 21. Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models.
    Yang S; Laudanski A; Li Q
    Med Biol Eng Comput; 2012 Apr; 50(4):383-93. PubMed ID: 22418894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short Step Length Estimation for Parkinson's Disease Patients by Using Fusion Data From Camera-IMU in Smart Glasses.
    Jiang W; Zhou H; Wu J; Chen H; Li L; Wu Y; Meng T; Zuo G; Fan W; Shi C
    IEEE Trans Biomed Eng; 2024 Jul; 71(7):2265-2275. PubMed ID: 38376981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gait Phase Estimation Based on Noncontact Capacitive Sensing and Adaptive Oscillators.
    Zheng E; Manca S; Yan T; Parri A; Vitiello N; Wang Q
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2419-2430. PubMed ID: 28252387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of pelvis kinematics in level walking based on a single inertial sensor positioned close to the sacrum: validation on healthy subjects with stereophotogrammetric system.
    Buganè F; Benedetti MG; D'Angeli V; Leardini A
    Biomed Eng Online; 2014 Oct; 13():146. PubMed ID: 25336170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. IMU-based gait analysis in lower limb prosthesis users: Comparison of step demarcation algorithms.
    Bastas G; Fleck JJ; Peters RA; Zelik KE
    Gait Posture; 2018 Jul; 64():30-37. PubMed ID: 29807270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validity of an inertial measurement unit to assess pelvic orientation angles during gait, sit-stand transfers and step-up transfers: Comparison with an optoelectronic motion capture system.
    Bolink SA; Naisas H; Senden R; Essers H; Heyligers IC; Meijer K; Grimm B
    Med Eng Phys; 2016 Mar; 38(3):225-31. PubMed ID: 26711470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Human Gait Tracking System Using Dual Foot-Mounted IMU and Multiple 2D LiDARs.
    Duong HT; Suh YS
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults.
    Bertoli M; Cereatti A; Trojaniello D; Avanzino L; Pelosin E; Del Din S; Rochester L; Ginis P; Bekkers EMJ; Mirelman A; Hausdorff JM; Della Croce U
    Biomed Eng Online; 2018 May; 17(1):58. PubMed ID: 29739456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation.
    Yoon J; Park HS; Damiano DL
    J Neuroeng Rehabil; 2012 Aug; 9():62. PubMed ID: 22929169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real Time Estimation of the Pose of a Lower Limb Prosthesis from a Single Shank Mounted IMU.
    Duraffourg C; Bonnet X; Dauriac B; Pillet H
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Portable Gait Lab: Estimating Over-Ground 3D Ground Reaction Forces Using Only a Pelvis IMU.
    Mohamed Refai MI; van Beijnum BF; Buurke JH; Veltink PH
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of inertial sensors for ambulatory assessment of center-of-mass displacements during walking.
    Floor-Westerdijk MJ; Schepers HM; Veltink PH; van Asseldonk EH; Buurke JH
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):2080-4. PubMed ID: 22665499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A wearable solution for accurate step detection based on the direct measurement of the inter-foot distance.
    Bertuletti S; Della Croce U; Cereatti A
    J Biomech; 2019 Feb; 84():274-277. PubMed ID: 30630626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gait posture estimation using wearable acceleration and gyro sensors.
    Takeda R; Tadano S; Natorigawa A; Todoh M; Yoshinari S
    J Biomech; 2009 Nov; 42(15):2486-94. PubMed ID: 19682694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis.
    Alonge F; Cucco E; D'Ippolito F; Pulizzotto A
    Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Where to wear accelerometers to measure physical activity in people?
    Thaler-Kall K; Tusker F; Hermsdörfer J; Gorzelniak L; Horsch A
    Stud Health Technol Inform; 2013; 192():1045. PubMed ID: 23920819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of foot placement and its variability with inertial sensors.
    Rebula JR; Ojeda LV; Adamczyk PG; Kuo AD
    Gait Posture; 2013 Sep; 38(4):974-80. PubMed ID: 23810335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.