These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 22316235)

  • 41. Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor.
    Lueken M; Loeser J; Weber N; Bollheimer C; Leonhardt S; Ngo C
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2655-2665. PubMed ID: 34874862
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gait evaluation using inertial measurement units in subjects with Parkinson's disease.
    Zago M; Sforza C; Pacifici I; Cimolin V; Camerota F; Celletti C; Condoluci C; De Pandis MF; Galli M
    J Electromyogr Kinesiol; 2018 Oct; 42():44-48. PubMed ID: 29940494
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Foot worn inertial sensors for gait assessment and rehabilitation based on motorized shoes.
    Aminian K; Mariani B; Paraschiv-Ionescu A; Hoskovec C; Bula C; Penders J; Tacconi C; Marcellini F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5820-3. PubMed ID: 22255663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A practical step length algorithm using lower limb angular velocities.
    Allseits E; Agrawal V; Lučarević J; Gailey R; Gaunaurd I; Bennett C
    J Biomech; 2018 Jan; 66():137-144. PubMed ID: 29198369
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Estimation of stride-by-stride spatial gait parameters using inertial measurement unit attached to the shank with inverted pendulum model.
    Mao Y; Ogata T; Ora H; Tanaka N; Miyake Y
    Sci Rep; 2021 Jan; 11(1):1391. PubMed ID: 33446858
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantification of gait parameters with inertial sensors and inverse kinematics.
    Bötzel K; Olivares A; Cunha JP; Górriz Sáez JM; Weiss R; Plate A
    J Biomech; 2018 Apr; 72():207-214. PubMed ID: 29602474
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Portable Gait Lab: Tracking Relative Distances of Feet and CoM Using Three IMUs.
    Mohamed Refai MI; van Beijnum BF; Buurke JH; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2255-2264. PubMed ID: 32816676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A wireless trigger for synchronization of wearable sensors to external systems during recording of human gait.
    Kugler P; Schlarb H; Blinn J; Picard A; Eskofier B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4537-40. PubMed ID: 23366937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inertial Measurement Unit-Based Estimation of Foot Trajectory for Clinical Gait Analysis.
    Hori K; Mao Y; Ono Y; Ora H; Hirobe Y; Sawada H; Inaba A; Orimo S; Miyake Y
    Front Physiol; 2019; 10():1530. PubMed ID: 31998138
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accuracy and precision of hind limb foot contact timings of horses determined using a pelvis-mounted inertial measurement unit.
    Starke SD; Witte TH; May SA; Pfau T
    J Biomech; 2012 May; 45(8):1522-8. PubMed ID: 22483227
    [TBL] [Abstract][Full Text] [Related]  

  • 51. IMU: inertial sensing of vertical CoM movement.
    Esser P; Dawes H; Collett J; Howells K
    J Biomech; 2009 Jul; 42(10):1578-1581. PubMed ID: 19442978
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Accuracy Verification of Spatio-Temporal and Kinematic Parameters for Gait Using Inertial Measurement Unit System.
    Yeo SS; Park GY
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121456
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lower limb wearable capacitive sensing and its applications to recognizing human gaits.
    Zheng E; Chen B; Wei K; Wang Q
    Sensors (Basel); 2013 Oct; 13(10):13334-55. PubMed ID: 24084122
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gait cycle spectrogram analysis using a torso-attached inertial sensor.
    Yuwono M; Su SW; Moulton BD; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6539-42. PubMed ID: 23367427
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effectiveness of variable-gain Kalman filter based on angle error calculated from acceleration signals in lower limb angle measurement with inertial sensors.
    Teruyama Y; Watanabe T
    Comput Math Methods Med; 2013; 2013():398042. PubMed ID: 24282442
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inertial sensor-based two feet motion tracking for gait analysis.
    Hung TN; Suh YS
    Sensors (Basel); 2013 Apr; 13(5):5614-29. PubMed ID: 23628759
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Mobile Kalman-Filter Based Solution for the Real-Time Estimation of Spatio-Temporal Gait Parameters.
    Ferrari A; Ginis P; Hardegger M; Casamassima F; Rocchi L; Chiari L
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):764-73. PubMed ID: 26259246
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Validity and inter-rater reliability of inertial gait measurements in Parkinson's disease: a pilot study.
    Esser P; Dawes H; Collett J; Feltham MG; Howells K
    J Neurosci Methods; 2012 Mar; 205(1):177-81. PubMed ID: 22269595
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Validity of Measurement for Trailing Limb Angle and Propulsion Force during Gait Using a Magnetic Inertial Measurement Unit.
    Miyazaki T; Kawada M; Nakai Y; Kiyama R; Yone K
    Biomed Res Int; 2019; 2019():8123467. PubMed ID: 31930138
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cost-Effective Wearable Indoor Localization and Motion Analysis via the Integration of UWB and IMU.
    Zhang H; Zhang Z; Gao N; Xiao Y; Meng Z; Li Z
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.