These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 22316602)
1. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress. Gómez-Galera S; Sudhakar D; Pelacho AM; Capell T; Christou P Plant Physiol Biochem; 2012 Apr; 53():46-53. PubMed ID: 22316602 [TBL] [Abstract][Full Text] [Related]
2. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. Masuda H; Shimochi E; Hamada T; Senoura T; Kobayashi T; Aung MS; Ishimaru Y; Ogo Y; Nakanishi H; Nishizawa NK PLoS One; 2017; 12(3):e0173441. PubMed ID: 28278216 [TBL] [Abstract][Full Text] [Related]
3. The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. Banakar R; Alvarez Fernández Á; Abadía J; Capell T; Christou P Plant Biotechnol J; 2017 Apr; 15(4):423-432. PubMed ID: 27633505 [TBL] [Abstract][Full Text] [Related]
4. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Nozoye T; Nagasaka S; Kobayashi T; Takahashi M; Sato Y; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK J Biol Chem; 2011 Feb; 286(7):5446-54. PubMed ID: 21156806 [TBL] [Abstract][Full Text] [Related]
5. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments. Murata Y; Itoh Y; Iwashita T; Namba K PLoS One; 2015; 10(3):e0120227. PubMed ID: 25781941 [TBL] [Abstract][Full Text] [Related]
6. Early senescence of the oldest leaves of Fe-deficient barley plants may contribute to phytosiderophore release from the roots. Higuchi K; Iwase J; Tsukiori Y; Nakura D; Kobayashi N; Ohashi H; Saito A; Miwa E Physiol Plant; 2014 Jul; 151(3):313-22. PubMed ID: 24611482 [TBL] [Abstract][Full Text] [Related]
7. A novel barley yellow stripe 1-like transporter (HvYSL2) localized to the root endodermis transports metal-phytosiderophore complexes. Araki R; Murata J; Murata Y Plant Cell Physiol; 2011 Nov; 52(11):1931-40. PubMed ID: 21937676 [TBL] [Abstract][Full Text] [Related]
8. A specific transporter for iron(III)-phytosiderophore in barley roots. Murata Y; Ma JF; Yamaji N; Ueno D; Nomoto K; Iwashita T Plant J; 2006 May; 46(4):563-72. PubMed ID: 16640594 [TBL] [Abstract][Full Text] [Related]
9. Further characterization of ferric-phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley. Ueno D; Yamaji N; Ma JF J Exp Bot; 2009; 60(12):3513-20. PubMed ID: 19549626 [TBL] [Abstract][Full Text] [Related]
10. Iron deficiency tolerance traits in wild (Hordeum maritimum) and cultivated barley (Hordeum vulgare). Yousfi S; Rabhi M; Abdelly C; Gharsalli M C R Biol; 2009 Jun; 332(6):523-33. PubMed ID: 19520315 [TBL] [Abstract][Full Text] [Related]
11. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Ogo Y; Itai RN; Kobayashi T; Aung MS; Nakanishi H; Nishizawa NK Plant Mol Biol; 2011 Apr; 75(6):593-605. PubMed ID: 21331630 [TBL] [Abstract][Full Text] [Related]
12. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Takahashi M; Nakanishi H; Kawasaki S; Nishizawa NK; Mori S Nat Biotechnol; 2001 May; 19(5):466-9. PubMed ID: 11329018 [TBL] [Abstract][Full Text] [Related]
13. The Phytosiderophore Efflux Transporter TOM2 Is Involved in Metal Transport in Rice. Nozoye T; Nagasaka S; Kobayashi T; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK J Biol Chem; 2015 Nov; 290(46):27688-99. PubMed ID: 26432636 [TBL] [Abstract][Full Text] [Related]
14. Organic Chemistry Research on the Mechanistic Elucidation of Iron Acquisition in Barley. Namba K; Murata Y Biol Pharm Bull; 2018; 41(10):1502-1507. PubMed ID: 30270318 [TBL] [Abstract][Full Text] [Related]
15. Structural element responsible for the Fe(III)-phytosiderophore specific transport by HvYS1 transporter in barley. Harada E; Sugase K; Namba K; Iwashita T; Murata Y FEBS Lett; 2007 Sep; 581(22):4298-302. PubMed ID: 17707820 [TBL] [Abstract][Full Text] [Related]
16. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2'-deoxymugineic acid to mugineic acid in transgenic rice. Kobayashi T; Nakanishi H; Takahashi M; Kawasaki S; Nishizawa NK; Mori S Planta; 2001 Apr; 212(5-6):864-71. PubMed ID: 11346963 [TBL] [Abstract][Full Text] [Related]
17. Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration. Haase S; Rothe A; Kania A; Wasaki J; Römheld V; Engels C; Kandeler E; Neumann G J Environ Qual; 2008; 37(3):1254-62. PubMed ID: 18453445 [TBL] [Abstract][Full Text] [Related]
18. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains. Senoura T; Sakashita E; Kobayashi T; Takahashi M; Aung MS; Masuda H; Nakanishi H; Nishizawa NK Plant Mol Biol; 2017 Nov; 95(4-5):375-387. PubMed ID: 28871478 [TBL] [Abstract][Full Text] [Related]
19. Effect of salt on physiological responses of barley to iron deficiency. Yousfi S; Wissal M; Mahmoudi H; Abdelly C; Gharsalli M Plant Physiol Biochem; 2007 May; 45(5):309-14. PubMed ID: 17467285 [TBL] [Abstract][Full Text] [Related]
20. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Delhaize E; Taylor P; Hocking PJ; Simpson RJ; Ryan PR; Richardson AE Plant Biotechnol J; 2009 Jun; 7(5):391-400. PubMed ID: 19490502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]