These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 22316613)

  • 1. Characterisation and improvement of a reference cylindrical sonoreactor.
    Memoli G; Gélat PN; Hodnett M; Zeqiri B
    Ultrason Sonochem; 2012 Jul; 19(4):939-52. PubMed ID: 22316613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a reference ultrasonic cavitation vessel: Part 2--investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field.
    Hodnett M; Zeqiri B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1809-22. PubMed ID: 18986923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor.
    Son Y; Lim M; Khim J; Ashokkumar M
    Ultrason Sonochem; 2012 Jan; 19(1):16-21. PubMed ID: 21705256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a reference ultrasonic cavitation vessel. Part 1: preliminary investigation of the acoustic field distribution in a 25 kHz cylindrical cell.
    Hodnett M; Choi MJ; Zeqiri B
    Ultrason Sonochem; 2007 Jan; 14(1):29-40. PubMed ID: 16549381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of acoustic and geometric effects on the sonoreactor performance.
    Rashwan SS; Dincer I; Mohany A
    Ultrason Sonochem; 2020 Nov; 68():105174. PubMed ID: 32505100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical investigation of the mean acoustic pressure in the cavitation field.
    Campos-Pozuelo C; Granger C; Vanhille C; Moussatov A; Dubus B
    Ultrason Sonochem; 2005 Jan; 12(1-2):79-84. PubMed ID: 15474956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of acoustic cavitation energy in a large-scale sonoreactor.
    Son Y; Lim M; Khim J
    Ultrason Sonochem; 2009 Apr; 16(4):552-6. PubMed ID: 19144557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results.
    Klíma J; Frias-Ferrer A; González-García J; Ludvík J; Sáez V; Iniesta J
    Ultrason Sonochem; 2007 Jan; 14(1):19-28. PubMed ID: 16545594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors.
    Asakura Y; Nishida T; Matsuoka T; Koda S
    Ultrason Sonochem; 2008 Mar; 15(3):244-50. PubMed ID: 17548225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a 20 kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods.
    Sáez V; Frías-Ferrer A; Iniesta J; González-García J; Aldaz A; Riera E
    Ultrason Sonochem; 2005 Jan; 12(1-2):59-65. PubMed ID: 15474953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contamination-free high capacity converging waves sonoreactors for the chemical industry.
    Dion JL
    Ultrason Sonochem; 2009 Feb; 16(2):212-20. PubMed ID: 18789748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of the characteristics of bubbles on types of sonochemical reactors.
    Yasui K; Tuziuti T; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic processing of dairy systems in large scale reactors.
    Zisu B; Bhaskaracharya R; Kentish S; Ashokkumar M
    Ultrason Sonochem; 2010 Aug; 17(6):1075-81. PubMed ID: 19948420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement and control of acoustic cavitation yield by low-level dual frequency sonication: a subharmonic analysis.
    Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM; Nilchiani V; Goudarzi H
    Ultrason Sonochem; 2011 Jan; 18(1):394-400. PubMed ID: 20678953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of liquid height/volume, initial concentration of reactant and acoustic power on sonochemical oxidation.
    Lim M; Ashokkumar M; Son Y
    Ultrason Sonochem; 2014 Nov; 21(6):1988-93. PubMed ID: 24690295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of acoustic flow and mechanical flow on the sonochemical efficiency in a rectangular sonochemical reactor.
    Kojima Y; Asakura Y; Sugiyama G; Koda S
    Ultrason Sonochem; 2010 Aug; 17(6):978-84. PubMed ID: 20044295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling low power acoustics for capillary sonoreactors.
    Navarro-Brull FJ; Teixeira AR; Giri G; Gómez R
    Ultrason Sonochem; 2019 Sep; 56():105-113. PubMed ID: 31101244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review.
    Tudela I; Sáez V; Esclapez MD; Díez-García MI; Bonete P; González-García J
    Ultrason Sonochem; 2014 May; 21(3):909-19. PubMed ID: 24355287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of liquid recirculation flow on sonochemical oxidation activity in a 28 kHz sonoreactor.
    Lee D; Na I; Son Y
    Chemosphere; 2022 Jan; 286(Pt 2):131780. PubMed ID: 34358887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.