These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22317045)

  • 1. Patterns of correlation between vehicle occupant seat pressure and anthropometry.
    Paul G; Daniell N; Fraysse F
    Work; 2012; 41 Suppl 1():2226-31. PubMed ID: 22317045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Submarining sensitivity across varied seat configurations in autonomous driving system environment.
    Rawska K; Gepner B; Moreau D; Kerrigan JR
    Traffic Inj Prev; 2020 Oct; 21(sup1):S1-S6. PubMed ID: 32658549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometry of rear seats and child restraints compared to child anthropometry.
    Bilston LE; Sagar N
    Stapp Car Crash J; 2007 Oct; 51():275-98. PubMed ID: 18278601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A matched-cohort analysis of belted front and rear seat occupants in newer and older model vehicles shows that gains in front occupant safety have outpaced gains for rear seat occupants.
    Bilston LE; Du W; Brown J
    Accid Anal Prev; 2010 Nov; 42(6):1974-7. PubMed ID: 20728650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automobile seat comfort: occupant preferences vs. anthropometric accommodation.
    Kolich M
    Appl Ergon; 2003 Mar; 34(2):177-84. PubMed ID: 12628575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A statistical model including age to predict passenger postures in the rear seats of automobiles.
    Park J; Ebert SM; Reed MP; Hallman JJ
    Ergonomics; 2016 Jun; 59(6):796-805. PubMed ID: 26328769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of seat properties on occupant dynamics in severe rear crashes.
    Viano DC
    Traffic Inj Prev; 2003 Dec; 4(4):324-36. PubMed ID: 14630581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The safest seat: effect of seating position on occupant mortality.
    Mayrose J; Priya A
    J Safety Res; 2008; 39(4):433-6. PubMed ID: 18786431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivariate head injury threshold measures for various sized children seated behind vehicle seats in rear impacts.
    Saczalski K; Sances A; Kumaresan S; Pozzi M; Saczalski T; Burton JL; Lewis P
    Biomed Sci Instrum; 2004; 40():381-6. PubMed ID: 15133988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Head impact contact points for restrained child occupants.
    Arbogast KB; Wozniak S; Locey CM; Maltese MR; Zonfrillo MR
    Traffic Inj Prev; 2012; 13(2):172-81. PubMed ID: 22458796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of vehicle interior geometry and anthropometric variables on automobile driving posture.
    Reed MP; Manary MA; Flannagan CA; Schneider LW
    Hum Factors; 2000; 42(4):541-52. PubMed ID: 11324849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental injury study of children seated behind collapsing front seats in rear impacts.
    Saczalski KJ; Sances A; Kumaresan S; Burton JL; Lewis PR
    Biomed Sci Instrum; 2003; 39():259-65. PubMed ID: 12724904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ergonomics modelling and evaluation of automobile seat comfort.
    Kolich M; Taboun SM
    Ergonomics; 2004 Jun; 47(8):841-63. PubMed ID: 15204278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vehicle vibration study of child safety seats.
    Giacomin J; Gallo S
    Ergonomics; 2003 Dec; 46(15):1500-12. PubMed ID: 14668171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting static seat cushion comfort.
    Ebe K; Griffin MJ
    Ergonomics; 2001 Aug; 44(10):901-21. PubMed ID: 11681792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting passenger seat comfort and discomfort on the basis of human, context and seat characteristics: a literature review.
    Hiemstra-van Mastrigt S; Groenesteijn L; Vink P; Kuijt-Evers LFM
    Ergonomics; 2017 Jul; 60(7):889-911. PubMed ID: 27633349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method to evaluate the effect of safety belt use by rear seat passengers on the injury severity of front seat occupants.
    Shimamura M; Yamazaki M; Fujita G
    Accid Anal Prev; 2005 Jan; 37(1):5-17. PubMed ID: 15607270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of seat foam and geometrical properties on BioRID P3 kinematic response to rear impacts.
    Szabo TJ; Voss DP; Welcher JB
    Traffic Inj Prev; 2003 Dec; 4(4):315-23. PubMed ID: 14630580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element model of the human buttocks for prediction of seat pressure distributions.
    Verver MM; van Hoof J; Oomens CW; Wismans JS; Baaijens FP
    Comput Methods Biomech Biomed Engin; 2004 Aug; 7(4):193-203. PubMed ID: 15512763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of vehicle seat and belt geometry on belt fit for children with and without belt positioning booster seats.
    Reed MP; Ebert-Hamilton SM; Klinich KD; Manary MA; Rupp JD
    Accid Anal Prev; 2013 Jan; 50():512-22. PubMed ID: 22703990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.