These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22317231)

  • 1. The stochastic distribution of available coefficient of friction on quarry tiles for human locomotion.
    Chang WR; Matz S; Chang CC
    Work; 2012; 41 Suppl 1():3363-6. PubMed ID: 22317231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stochastic distribution of available coefficient of friction for human locomotion of five different floor surfaces.
    Chang WR; Matz S; Chang CC
    Appl Ergon; 2014 May; 45(3):811-5. PubMed ID: 24268803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A methodology to quantify the stochastic distribution of friction coefficient required for level walking.
    Chang WR; Chang CC; Matz S; Lesch MF
    Appl Ergon; 2008 Nov; 39(6):766-71. PubMed ID: 18187104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the stochastic nature of the available coefficient of friction at footwear-floor interfaces.
    Gragg J; Klose E; Yang J
    Ergonomics; 2017 Jul; 60(7):977-984. PubMed ID: 27592564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic distribution of the required coefficient of friction for level walking--an in-depth study.
    Chang WR; Matz S; Chang CC
    Ergonomics; 2012; 55(8):937-45. PubMed ID: 22676317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coefficient of friction testing parameters influence the prediction of human slips.
    Iraqi A; Cham R; Redfern MS; Beschorner KE
    Appl Ergon; 2018 Jul; 70():118-126. PubMed ID: 29866300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Available friction of ladder shoes and slip potential for climbing on a straight ladder.
    Chang WR; Chang CC; Matz S
    Ergonomics; 2005 Jul; 48(9):1169-82. PubMed ID: 16251154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance testing of work shoes labeled as slip resistant.
    Jones T; Iraqi A; Beschorner K
    Appl Ergon; 2018 Apr; 68():304-312. PubMed ID: 29409649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of surface waviness on friction between Neolite and quarry tiles.
    Chang WR; Grönqvist R; Hirvonen M; Matz S
    Ergonomics; 2004 Jun; 47(8):890-906. PubMed ID: 15204281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shoe-Floor Interactions in Human Walking With Slips: Modeling and Experiments.
    Trkov M; Yi J; Liu T; Li K
    J Biomech Eng; 2018 Mar; 140(3):. PubMed ID: 29055127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of coefficient of friction based on footwear outsole features.
    Iraqi A; Vidic NS; Redfern MS; Beschorner KE
    Appl Ergon; 2020 Jan; 82():102963. PubMed ID: 31580996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of gait parameters and available coefficient of friction to perceptions of slipperiness.
    Chang WR; Lesch MF; Chang CC; Matz S
    Gait Posture; 2015 Jan; 41(1):288-90. PubMed ID: 25201789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting slips based on the STM 603 whole-footwear tribometer under different coefficient of friction testing conditions.
    Beschorner KE; Iraqi A; Redfern MS; Cham R; Li Y
    Ergonomics; 2019 May; 62(5):668-681. PubMed ID: 30638144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In contrast to slip-resistant shoes, fluid drainage capacity explains friction performance across shoes that are not slip-resistant.
    Meehan EE; Vidic N; Beschorner KE
    Appl Ergon; 2022 Apr; 100():103663. PubMed ID: 34894586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of averaging time-interval on shoe-floor-contaminant available coefficient of friction measurements.
    Beschorner KE; Iraqi A; Redfern MS; Moyer BE; Cham R
    Appl Ergon; 2020 Jan; 82():102959. PubMed ID: 31568960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces.
    Kim IJ; Hsiao H; Simeonov P
    Appl Ergon; 2013 Jan; 44(1):58-64. PubMed ID: 22641153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of friction in the measurement of slipperiness, Part 1: friction mechanisms and definition of test conditions.
    Chang WR; Grönqvist R; Leclercq S; Myung R; Makkonen L; Strandberg L; Brungraber RJ; Mattke U; Thorpe SC
    Ergonomics; 2001 Oct; 44(13):1217-32. PubMed ID: 11794765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
    Sundaram VH; Hemler SL; Chanda A; Haight JM; Redfern MS; Beschorner KE
    J Biomech; 2020 May; 105():109797. PubMed ID: 32423543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Friction between footwear and floor covered with solid particles under dry and wet conditions.
    Li KW; Meng F; Zhang W
    Int J Occup Saf Ergon; 2014; 20(1):43-53. PubMed ID: 24629869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear regression models of floor surface parameters on friction between Neolite and quarry tiles.
    Chang WR; Matz S; Grönqvist R; Hirvonen M
    Appl Ergon; 2010 Jan; 41(1):27-33. PubMed ID: 19427994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.