These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22317369)

  • 1. A comprehensive literature review of the pelvis and the lower extremity FE human models under quasi-static conditions.
    Al-Dirini RM; Thewlis D; Paul G
    Work; 2012; 41 Suppl 1():4218-29. PubMed ID: 22317369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A numerical investigation on the variation in hip injury tolerance with occupant posture during frontal collisions.
    Yue N; Untaroiu CD
    Traffic Inj Prev; 2014; 15(5):513-22. PubMed ID: 24678575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthropometric dependence of the response of a thorax FE model under high speed loading: validation and real world accident replication.
    Roth S; Torres F; Feuerstein P; Thoral-Pierre K
    Comput Methods Programs Biomed; 2013 May; 110(2):160-70. PubMed ID: 23246086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Lower Limb-Pelvis Finite Element Model with 3D Active Muscles.
    Mo F; Li F; Behr M; Xiao Z; Zhang G; Du X
    Ann Biomed Eng; 2018 Jan; 46(1):86-96. PubMed ID: 29038943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element model of the foot and ankle for automotive impact applications.
    Shin J; Yue N; Untaroiu CD
    Ann Biomed Eng; 2012 Dec; 40(12):2519-31. PubMed ID: 22695987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How has the impact of 'care pathway technologies' on service integration in stroke care been measured and what is the strength of the evidence to support their effectiveness in this respect?
    Allen D; Rixson L
    Int J Evid Based Healthc; 2008 Mar; 6(1):78-110. PubMed ID: 21631815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional modeling of supine human and transport system under whole-body vibration.
    Wang Y; Rahmatalla S
    J Biomech Eng; 2013 Jun; 135(6):61010-13. PubMed ID: 23699722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body.
    Majumder S; Roychowdhury A; Pal S
    Med Eng Phys; 2007 Dec; 29(10):1167-78. PubMed ID: 17270483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repositioning the knee joint in human body FE models using a graphics-based technique.
    Jani D; Chawla A; Mukherjee S; Goyal R; Vusirikala N; Jayaraman S
    Traffic Inj Prev; 2012; 13(6):640-9. PubMed ID: 23137095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy and Reliability of Marker-Based Approaches to Scale the Pelvis, Thigh, and Shank Segments in Musculoskeletal Models.
    Kainz H; Hoang HX; Stockton C; Boyd RR; Lloyd DG; Carty CP
    J Appl Biomech; 2017 Oct; 33(5):354-360. PubMed ID: 28290736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element and experimental cortex strains of the intact and implanted tibia.
    Completo A; Fonseca F; Simões JA
    J Biomech Eng; 2007 Oct; 129(5):791-7. PubMed ID: 17887906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A procedure for estimating the relevant forces in the human knee using a four-bar mechanism.
    Farhat N; Mata V; Rosa D; Fayos J
    Comput Methods Biomech Biomed Engin; 2010 Oct; 13(5):577-87. PubMed ID: 20204911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modeling of a 3D coupled foot-boot model.
    Qiu TX; Teo EC; Yan YB; Lei W
    Med Eng Phys; 2011 Dec; 33(10):1228-33. PubMed ID: 21676642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element models of the thigh-buttock complex for assessing static sitting discomfort and pressure sore risk: a literature review.
    Savonnet L; Wang X; Duprey S
    Comput Methods Biomech Biomed Engin; 2018 Mar; 21(4):379-388. PubMed ID: 29722570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of objective rating methods for full-body finite element model comparison to PMHS tests.
    Vavalle NA; Jelen BC; Moreno DP; Stitzel JD; Gayzik FS
    Traffic Inj Prev; 2013; 14 Suppl():S87-94. PubMed ID: 23905846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite element model of the lower limb for simulating automotive impacts.
    Untaroiu CD; Yue N; Shin J
    Ann Biomed Eng; 2013 Mar; 41(3):513-26. PubMed ID: 23180026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of vehicle impact velocity, vehicle front-end shapes on pedestrian injury risk.
    Han Y; Yang J; Mizuno K; Matsui Y
    Traffic Inj Prev; 2012 Sep; 13(5):507-18. PubMed ID: 22931181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the mass distribution of a detailed seated male finite element model.
    Vavalle NA; Thompson AB; Hayes AR; Moreno DP; Stitzel JD; Gayzik FS
    J Appl Biomech; 2014 Jun; 30(3):471-6. PubMed ID: 24345784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.