BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2231738)

  • 1. Regulation of systolic force and control of free energy of ATP-hydrolysis in hypoxic hearts.
    Kammermeier H; Roeb E; Jüngling E; Meyer B
    J Mol Cell Cardiol; 1990 Jun; 22(6):707-13. PubMed ID: 2231738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myocardial performance and free energy of ATP-hydrolysis in isolated rat hearts during graded hypoxia, reoxygenation and high Ke+-perfusion.
    Griese M; Perlitz V; Jüngling E; Kammermeier H
    J Mol Cell Cardiol; 1988 Dec; 20(12):1189-201. PubMed ID: 3249307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interrelationship between the free energy change of ATP-hydrolysis, cytosolic inorganic phosphate and cardiac performance during hypoxia and reoxygenation.
    Kammermeier H
    Biomed Biochim Acta; 1987; 46(8-9):S499-504. PubMed ID: 3435508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart.
    Matthews PM; Taylor DJ; Radda GK
    Cardiovasc Res; 1986 Jan; 20(1):13-9. PubMed ID: 3708637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force development, energy state and ATP production of cardiac muscle from turtles and trout during normoxia and severe hypoxia.
    Overgaard J; Gesser H
    J Exp Biol; 2004 May; 207(Pt 11):1915-24. PubMed ID: 15107445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sensitivity to hypoxia-induced diastolic dysfunction in pressure-overload left ventricular hypertrophy in the rat: role of high-energy phosphate depletion.
    Wexler LF; Lorell BH; Momomura S; Weinberg EO; Ingwall JS; Apstein CS
    Circ Res; 1988 Apr; 62(4):766-75. PubMed ID: 2964946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of accumulation of sodium and calcium on contractile failure of the hypoxic/reoxygenated heart.
    Tanonaka K; Niwa T; Takeo S
    Jpn Heart J; 1996 Jan; 37(1):105-17. PubMed ID: 8632618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of hypoxia and aging in the heart: analysis of high energy phosphate content.
    Bak MI; Wei JY; Ingwall JS
    J Mol Cell Cardiol; 1998 Mar; 30(3):661-72. PubMed ID: 9515041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function and bioenergetics in isolated perfused trained rat hearts.
    Spencer RG; Buttrick PM; Ingwall JS
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H409-17. PubMed ID: 9038963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac contractile function, oxygen consumption rate and cytosolic phosphates during inhibition of electron flux by amytal--a 31P-NMR study.
    Kupriyanov VV; Lakomkin VL; Korchazhkina OV; Stepanov VA; Steinschneider AYa ; Kapelko VI
    Biochim Biophys Acta; 1991 Jul; 1058(3):386-99. PubMed ID: 2065062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy levels at systole vs. diastole in normal hamster hearts vs. myopathic hamster hearts.
    Sievers R; Parmley WW; James T; Wikman-Coffelt J
    Circ Res; 1983 Dec; 53(6):759-66. PubMed ID: 6640862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of post-hypoxic contractile and metabolic recovery of perfused rat hearts by dl-propranolol: possible involvement of non-beta-receptor mediated activity.
    Fujioka H; Yoshihara S; Tanaka T; Fukumoto T; Kuroiwa A; Tanonaka K; Hayashi M; Takeo S
    J Mol Cell Cardiol; 1991 Aug; 23(8):949-62. PubMed ID: 1658346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo.
    Portman MA; Standaert TA; Ning XH
    J Clin Invest; 1995 May; 95(5):2134-42. PubMed ID: 7738181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haemodynamic and energetic properties of stunned myocardium in rabbit hearts.
    Schipke JD; Korbmacher B; Dorszewski A; Selcan G; Sunderdiek U; Arnold G
    Heart; 1996 Jan; 75(1):55-61. PubMed ID: 8624873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The change of the free energy of ATP hydrolysis during global ischemia and anoxia in the rat heart. Its possible role in the regulation of transsarcolemmal sodium and potassium gradients.
    Fiolet JW; Baartscheer A; Schumacher CA; Coronel R; ter Welle HF
    J Mol Cell Cardiol; 1984 Nov; 16(11):1023-36. PubMed ID: 6520874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetic basis for reduced contractile reserve in isolated rat hearts.
    Tian R; Ingwall JS
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1207-16. PubMed ID: 8967358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium?
    Kammermeier H; Schmidt P; Jüngling E
    J Mol Cell Cardiol; 1982 May; 14(5):267-77. PubMed ID: 7131563
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of energy demand in ischemic and in hypoxemic isolated rat hearts.
    Samaja M; Casalini S; Allibardi S; Corno A
    Adv Exp Med Biol; 1994; 361():393-9. PubMed ID: 7597962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atrial bioenergetic variations in moderate hypoxia: danger or protective defense?
    Caparrotta L; Poja R; Ragazzi E; Froldi G; Pandolfo L; Prosdocimi M; Fassina G
    Basic Res Cardiol; 1989; 84(5):449-60. PubMed ID: 2818445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase.
    Saupe KW; Spindler M; Tian R; Ingwall JS
    Circ Res; 1998 May; 82(8):898-907. PubMed ID: 9576109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.