These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 22318084)
1. Fermentative biohydrogen production from lactate and acetate. Wu CW; Whang LM; Cheng HH; Chan KC Bioresour Technol; 2012 Jun; 113():30-6. PubMed ID: 22318084 [TBL] [Abstract][Full Text] [Related]
2. A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues. Cheng HH; Whang LM; Wu CW; Chung MC Bioresour Technol; 2012 Jun; 113():23-9. PubMed ID: 22290020 [TBL] [Abstract][Full Text] [Related]
3. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration. Kim SH; Han SK; Shin HS Water Sci Technol; 2005; 52(10-11):23-9. PubMed ID: 16459773 [TBL] [Abstract][Full Text] [Related]
4. Effects of initial lactic acid concentration, HRTs, and OLRs on bio-hydrogen production from lactate-type fermentation. Kim TH; Lee Y; Chang KH; Hwang SJ Bioresour Technol; 2012 Jan; 103(1):136-41. PubMed ID: 22071244 [TBL] [Abstract][Full Text] [Related]
5. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P; Min B; Angelidaki I Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [TBL] [Abstract][Full Text] [Related]
7. Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor. Cheong DY; Hansen CL; Stevens DK Biotechnol Bioeng; 2007 Feb; 96(3):421-32. PubMed ID: 17013946 [TBL] [Abstract][Full Text] [Related]
8. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
9. Effect of COD/SO(4)2- ratio and Fe(II) under the variable hydraulic retention time (HRT) on fermentative hydrogen production. Hwang JH; Cha GC; Jeong TY; Kim DJ; Bhatnagar A; Min B; Song H; Choi JA; Lee JH; Jeong DW; Chung HK; Park YT; Choi J; Abou-Shanab RA; Oh SE; Jeon BH Water Res; 2009 Aug; 43(14):3525-33. PubMed ID: 19555990 [TBL] [Abstract][Full Text] [Related]
10. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction. Zhao Y; Ren N; Wang A Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751 [TBL] [Abstract][Full Text] [Related]
11. Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition. Whang LM; Lin CA; Liu IC; Wu CW; Cheng HH Bioresour Technol; 2011 Sep; 102(18):8378-83. PubMed ID: 21511461 [TBL] [Abstract][Full Text] [Related]
12. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Kongjan P; O-Thong S; Kotay M; Min B; Angelidaki I Biotechnol Bioeng; 2010 Apr; 105(5):899-908. PubMed ID: 19998285 [TBL] [Abstract][Full Text] [Related]
13. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152 [TBL] [Abstract][Full Text] [Related]
14. Metabolic flux network analysis of fermentative hydrogen production: using Clostridium tyrobutyricum as an example. Cheng HH; Whang LM; Lin CA; Liu IC; Wu CW Bioresour Technol; 2013 Aug; 141():233-9. PubMed ID: 23659760 [TBL] [Abstract][Full Text] [Related]
15. Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. Venkata Mohan S; Vijaya Bhaskar Y; Sarma PN Water Res; 2007 Jun; 41(12):2652-64. PubMed ID: 17418367 [TBL] [Abstract][Full Text] [Related]
16. Changes in bacterial community during fermentative hydrogen and acid production from organic waste by thermophilic anaerobic microflora. Ueno Y; Sasaki D; Fukui H; Haruta S; Ishii M; Igarashi Y J Appl Microbiol; 2006 Aug; 101(2):331-43. PubMed ID: 16882140 [TBL] [Abstract][Full Text] [Related]
17. An electron-flow model can predict complex redox reactions in mixed-culture fermentative bioH2: microbial ecology evidence. Lee HS; Krajmalinik-Brown R; Zhang H; Rittmann BE Biotechnol Bioeng; 2009 Nov; 104(4):687-97. PubMed ID: 19530077 [TBL] [Abstract][Full Text] [Related]
18. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Jo JH; Lee DS; Park D; Park JM Bioresour Technol; 2008 Sep; 99(14):6666-72. PubMed ID: 18248983 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate. Shi Y; Zhao XT; Cao P; Hu Y; Zhang L; Jia Y; Lu Z Biotechnol Lett; 2009 Sep; 31(9):1327-33. PubMed ID: 19466560 [TBL] [Abstract][Full Text] [Related]
20. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Kongjan P; Angelidaki I Bioresour Technol; 2010 Oct; 101(20):7789-96. PubMed ID: 20554199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]