These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22318343)

  • 1. Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy.
    Volkov AN; Vanwetswinkel S; Van de Water K; van Nuland NA
    J Biomol NMR; 2012 Mar; 52(3):245-56. PubMed ID: 22318343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c.
    Feng Y; Roder H; Englander SW
    Biochemistry; 1990 Apr; 29(14):3494-504. PubMed ID: 2162193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of pseudocontact shifts and their relationship to structural features of the redox states of cytochrome b5.
    Veitch NC; Whitford D; Williams RJ
    FEBS Lett; 1990 Sep; 269(2):297-304. PubMed ID: 2401354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The solution structure of bovine ferricytochrome b5 determined using heteronuclear NMR methods.
    Muskett FW; Kelly GP; Whitford D
    J Mol Biol; 1996 Apr; 258(1):172-89. PubMed ID: 8613986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of reduced and oxidized yeast iso-1-cytochrome c using proton paramagnetic shifts.
    Gao YA; Boyd J; Pielak GJ; Williams RJ
    Biochemistry; 1991 Feb; 30(7):1928-34. PubMed ID: 1847077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of oxidized cytochrome c6 from the green alga Monoraphidium braunii.
    Banci L; Bertini I; De la Rosa MA; Koulougliotis D; Navarro JA; Walter O
    Biochemistry; 1998 Apr; 37(14):4831-43. PubMed ID: 9538000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Backbone and side-chain heteronuclear resonance assignments and hyperfine NMR shifts in horse cytochrome c.
    Liu W; Rumbley J; Englander SW; Wand AJ
    Protein Sci; 2003 Sep; 12(9):2104-8. PubMed ID: 12931009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation of the axial ligands and magnetic properties of the hemes in the triheme ferricytochrome PpcA from G. sulfurreducens determined by paramagnetic NMR.
    Morgado L; Saraiva IH; Louro RO; Salgueiro CA
    FEBS Lett; 2010 Aug; 584(15):3442-5. PubMed ID: 20609365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the structure of oxidized Pseudomonas aeruginosa cytochrome c-551 by NMR: comparison of observed paramagnetic shifts and calculated pseudocontact shifts.
    Timkovich R; Cai M
    Biochemistry; 1993 Nov; 32(43):11516-23. PubMed ID: 8218218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags.
    Abdelkader EH; Yao X; Feintuch A; Adams LA; Aurelio L; Graham B; Goldfarb D; Otting G
    J Biomol NMR; 2016 Jan; 64(1):39-51. PubMed ID: 26597990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton-NMR studies show that the Thr-102 mutant of yeast iso-1-cytochrome c is a typical member of the eukaryotic cytochrome c family.
    Pielak GJ; Boyd J; Moore GR; Williams RJ
    Eur J Biochem; 1988 Oct; 177(1):167-77. PubMed ID: 2846294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the network of functional cooperativities in cytochrome c(3) from Desulfovibrio gigas: solution structures of the oxidised and reduced states.
    Brennan L; Turner DL; Messias AC; Teodoro ML; LeGall J; Santos H; Xavier AV
    J Mol Biol; 2000 Apr; 298(1):61-82. PubMed ID: 10756105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein structure refinement based on paramagnetic NMR shifts: applications to wild-type and mutant forms of cytochrome c.
    Gochin M; Roder H
    Protein Sci; 1995 Feb; 4(2):296-305. PubMed ID: 7757018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics.
    Ubbink M; Ejdebäck M; Karlsson BG; Bendall DS
    Structure; 1998 Mar; 6(3):323-35. PubMed ID: 9551554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 15N-1H Residual dipolar coupling analysis of native and alkaline-K79A Saccharomyces cerevisiae cytochrome c.
    Assfalg M; Bertini I; Turano P; Mauk AG; Winkler JR; Gray HB
    Biophys J; 2003 Jun; 84(6):3917-23. PubMed ID: 12770897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of horse heart ferricytochrome c and detection of redox-related structural changes by high-resolution 1H NMR.
    Qi PX; Beckman RA; Wand AJ
    Biochemistry; 1996 Sep; 35(38):12275-86. PubMed ID: 8823161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudocontact Shift-Driven Iterative Resampling for 3D Structure Determinations of Large Proteins.
    Pilla KB; Otting G; Huber T
    J Mol Biol; 2016 Jan; 428(2 Pt B):522-32. PubMed ID: 26778618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance studies of cytochromes c in solution.
    Marion D
    Biochimie; 1994; 76(7):631-40. PubMed ID: 7893815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of reduced horse heart cytochrome c.
    Banci L; Bertini I; Huber JG; Spyroulias GA; Turano P
    J Biol Inorg Chem; 1999 Feb; 4(1):21-31. PubMed ID: 10499099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How reliable are pseudocontact shifts induced in proteins and ligands by mobile paramagnetic metal tags? A modelling study.
    Shishmarev D; Otting G
    J Biomol NMR; 2013 Jul; 56(3):203-16. PubMed ID: 23652856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.