These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22318398)
1. Inheritance and genetic mapping of two nuclear genes involved in nuclear-cytoplasmic incompatibility in peas (Pisum sativum L.). Bogdanova VS; Galieva ER; Yadrikhinskiy AK; Kosterin OE Theor Appl Genet; 2012 May; 124(8):1503-12. PubMed ID: 22318398 [TBL] [Abstract][Full Text] [Related]
2. Genetic analysis of nuclear-cytoplasmic incompatibility in pea associated with cytoplasm of an accession of wild subspecies Pisum sativum subsp. elatius (Bieb.) Schmahl. Bogdanova VS; Galieva ER; Kosterin OE Theor Appl Genet; 2009 Feb; 118(4):801-9. PubMed ID: 19099285 [TBL] [Abstract][Full Text] [Related]
3. Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus. Bogdanova VS; Kosterin OE; Yadrikhinskiy AK Theor Appl Genet; 2014 May; 127(5):1163-72. PubMed ID: 24619163 [TBL] [Abstract][Full Text] [Related]
4. Inheritance of organelle DNA markers in a pea cross associated with nuclear-cytoplasmic incompatibility. Bogdanova VS Theor Appl Genet; 2007 Jan; 114(2):333-9. PubMed ID: 17080258 [TBL] [Abstract][Full Text] [Related]
5. Nuclear-cytoplasmic conflict in pea (Pisum sativum L.) is associated with nuclear and plastidic candidate genes encoding acetyl-CoA carboxylase subunits. Bogdanova VS; Zaytseva OO; Mglinets AV; Shatskaya NV; Kosterin OE; Vasiliev GV PLoS One; 2015; 10(3):e0119835. PubMed ID: 25789472 [TBL] [Abstract][Full Text] [Related]
6. Allelic Diversity of Acetyl Coenzyme A Carboxylase Nováková E; Zablatzká L; Brus J; Nesrstová V; Hanáček P; Kalendar R; Cvrčková F; Majeský Ľ; Smýkal P Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30974846 [TBL] [Abstract][Full Text] [Related]
7. [Meiotic abnormalities as expression of nuclear-cytoplasmic incompatibility in crosses of Pisum sativum subspecies]. Bogdanova VS; Galieva ER Genetika; 2009 May; 45(5):711-6. PubMed ID: 19534431 [TBL] [Abstract][Full Text] [Related]
8. Nuclear-cytoplasm conflict in crosses of pea subspecies is controlled by alleles of a nuclear gene on linkage group III. Yadrikhinskiy AK; Bogdanova VS Dokl Biol Sci; 2011; 441():396-9. PubMed ID: 22227690 [No Abstract] [Full Text] [Related]
10. Genetic analysis of pod dehiscence in pea (Pisum sativum L.). Weeden NF; Brauner S; Przyborowski JA Cell Mol Biol Lett; 2002; 7(2B):657-63. PubMed ID: 12378224 [TBL] [Abstract][Full Text] [Related]
11. A CAPS marker set for mapping in linkage group III of pea (Pisum sativum L.). Konovalov F; Toshchakova E; Gostimsky S Cell Mol Biol Lett; 2005; 10(1):163-71. PubMed ID: 15809687 [TBL] [Abstract][Full Text] [Related]
12. Genetic Diversity and Population Structure of a Wide Rispail N; Wohor OZ; Osuna-Caballero S; Barilli E; Rubiales D Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768792 [TBL] [Abstract][Full Text] [Related]
13. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew. Sun S; Deng D; Wang Z; Duan C; Wu X; Wang X; Zong X; Zhu Z Theor Appl Genet; 2016 May; 129(5):909-19. PubMed ID: 26801335 [TBL] [Abstract][Full Text] [Related]
14. Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Ek M; Eklund M; Von Post R; Dayteg C; Henriksson T; Weibull P; Ceplitis A; Isaac P; Tuvesson S Hereditas; 2005 Feb; 142(2005):86-91. PubMed ID: 16970617 [TBL] [Abstract][Full Text] [Related]
15. Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers. Teshome A; Bryngelsson T; Dagne K; Geleta M BMC Genet; 2015 Aug; 16():102. PubMed ID: 26286720 [TBL] [Abstract][Full Text] [Related]
16. Cryptic divergences in the genus Pisum L. (peas), as revealed by phylogenetic analysis of plastid genomes. Bogdanova VS; Mglinets AV; Shatskaya NV; Kosterin OE; Solovyev VI; Vasiliev GV Mol Phylogenet Evol; 2018 Dec; 129():280-290. PubMed ID: 30195476 [TBL] [Abstract][Full Text] [Related]
17. Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Prioul-Gervais S; Deniot G; Receveur EM; Frankewitz A; Fourmann M; Rameau C; Pilet-Nayel ML; Baranger A Theor Appl Genet; 2007 Apr; 114(6):971-84. PubMed ID: 17265025 [TBL] [Abstract][Full Text] [Related]
18. Genetic control and identification of QTLs associated with visual quality traits of field pea (Pisum sativum L.). Ubayasena L; Bett K; Tar'an B; Warkentin T Genome; 2011 Apr; 54(4):261-72. PubMed ID: 21491970 [TBL] [Abstract][Full Text] [Related]
19. Stability and inheritance of methylation states at PstI sites in Pisum. Knox MR; Ellis TH Mol Genet Genomics; 2001 May; 265(3):497-507. PubMed ID: 11405633 [TBL] [Abstract][Full Text] [Related]
20. Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L.). Gali KK; Liu Y; Sindhu A; Diapari M; Shunmugam ASK; Arganosa G; Daba K; Caron C; Lachagari RVB; Tar'an B; Warkentin TD BMC Plant Biol; 2018 Aug; 18(1):172. PubMed ID: 30115030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]