These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 22318716)
21. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. Panaretou B; Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH EMBO J; 1998 Aug; 17(16):4829-36. PubMed ID: 9707442 [TBL] [Abstract][Full Text] [Related]
22. Interaction of neuropeptide Y and Hsp90 through a novel peptide binding region. Ishiwatari-Hayasaka H; Maruya M; Sreedhar AS; Nemoto TK; Csermely P; Yahara I Biochemistry; 2003 Nov; 42(44):12972-80. PubMed ID: 14596612 [TBL] [Abstract][Full Text] [Related]
23. Biochemical and structural studies of the interaction of Cdc37 with Hsp90. Zhang W; Hirshberg M; McLaughlin SH; Lazar GA; Grossmann JG; Nielsen PR; Sobott F; Robinson CV; Jackson SE; Laue ED J Mol Biol; 2004 Jul; 340(4):891-907. PubMed ID: 15223329 [TBL] [Abstract][Full Text] [Related]
25. The hydrogen bonds between Arg423 and Glu472 and other key residues, Asp443, Ser477, and Pro489, are responsible for the formation and a different positioning of TNP-ATP and ATP within the nucleotide-binding site of Na(+)/K(+)-ATPase. Lánský Z; Kubala M; Ettrich R; Kutý M; Plásek J; Teisinger J; Schoner W; Amler E Biochemistry; 2004 Jul; 43(26):8303-11. PubMed ID: 15222743 [TBL] [Abstract][Full Text] [Related]
26. Coordinated ATP hydrolysis by the Hsp90 dimer. Richter K; Muschler P; Hainzl O; Buchner J J Biol Chem; 2001 Sep; 276(36):33689-96. PubMed ID: 11441008 [TBL] [Abstract][Full Text] [Related]
27. Conformational dynamics modulate the catalytic activity of the molecular chaperone Hsp90. Mader SL; Lopez A; Lawatscheck J; Luo Q; Rutz DA; Gamiz-Hernandez AP; Sattler M; Buchner J; Kaila VRI Nat Commun; 2020 Mar; 11(1):1410. PubMed ID: 32179743 [TBL] [Abstract][Full Text] [Related]
28. Crystal structure of the tandem-type universal stress protein TTHA0350 from Thermus thermophilus HB8. Iino H; Shimizu N; Goto M; Ebihara A; Fukui K; Hirotsu K; Kuramitsu S J Biochem; 2011 Sep; 150(3):295-302. PubMed ID: 21593057 [TBL] [Abstract][Full Text] [Related]
29. Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Retzlaff M; Hagn F; Mitschke L; Hessling M; Gugel F; Kessler H; Richter K; Buchner J Mol Cell; 2010 Feb; 37(3):344-54. PubMed ID: 20159554 [TBL] [Abstract][Full Text] [Related]
31. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. Grenert JP; Sullivan WP; Fadden P; Haystead TA; Clark J; Mimnaugh E; Krutzsch H; Ochel HJ; Schulte TW; Sausville E; Neckers LM; Toft DO J Biol Chem; 1997 Sep; 272(38):23843-50. PubMed ID: 9295332 [TBL] [Abstract][Full Text] [Related]
32. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. Meyer P; Prodromou C; Liao C; Hu B; Mark Roe S; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH EMBO J; 2004 Feb; 23(3):511-9. PubMed ID: 14739935 [TBL] [Abstract][Full Text] [Related]
33. Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1. Elnatan D; Betegon M; Liu Y; Ramelot T; Kennedy MA; Agard DA Elife; 2017 Jul; 6():. PubMed ID: 28742020 [TBL] [Abstract][Full Text] [Related]
34. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Ali MM; Roe SM; Vaughan CK; Meyer P; Panaretou B; Piper PW; Prodromou C; Pearl LH Nature; 2006 Apr; 440(7087):1013-7. PubMed ID: 16625188 [TBL] [Abstract][Full Text] [Related]
35. Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90. Wegele H; Muschler P; Bunck M; Reinstein J; Buchner J J Biol Chem; 2003 Oct; 278(41):39303-10. PubMed ID: 12890674 [TBL] [Abstract][Full Text] [Related]
36. Mycobacterium tuberculosis DNA gyrase ATPase domain structures suggest a dissociative mechanism that explains how ATP hydrolysis is coupled to domain motion. Agrawal A; Roué M; Spitzfaden C; Petrella S; Aubry A; Hann M; Bax B; Mayer C Biochem J; 2013 Dec; 456(2):263-73. PubMed ID: 24015710 [TBL] [Abstract][Full Text] [Related]
37. Probing the role of Arg97 in Heat shock protein 90 N-terminal domain from the parasite Leishmania braziliensis through site-directed mutagenesis on the human counterpart. Tassone G; Mangani S; Botta M; Pozzi C Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1190-1198. PubMed ID: 30248409 [TBL] [Abstract][Full Text] [Related]
38. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH Cell; 1997 Jul; 90(1):65-75. PubMed ID: 9230303 [TBL] [Abstract][Full Text] [Related]
39. Structure of the ATP-binding domain of Plasmodium falciparum Hsp90. Corbett KD; Berger JM Proteins; 2010 Oct; 78(13):2738-44. PubMed ID: 20635416 [TBL] [Abstract][Full Text] [Related]
40. First Structural View of a Peptide Interacting with the Nucleotide Binding Domain of Heat Shock Protein 90. Raman S; Singh M; Tatu U; Suguna K Sci Rep; 2015 Nov; 5():17015. PubMed ID: 26599366 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]