These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 22318716)

  • 41. Cross-monomer substrate contacts reposition the Hsp90 N-terminal domain and prime the chaperone activity.
    Street TO; Lavery LA; Verba KA; Lee CT; Mayer MP; Agard DA
    J Mol Biol; 2012 Jan; 415(1):3-15. PubMed ID: 22063096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intra- and intermonomer interactions are required to synergistically facilitate ATP hydrolysis in Hsp90.
    Cunningham CN; Krukenberg KA; Agard DA
    J Biol Chem; 2008 Jul; 283(30):21170-8. PubMed ID: 18492664
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADP, AMP-PNP, geldanamycin, and radicicol.
    Dehner A; Furrer J; Richter K; Schuster I; Buchner J; Kessler H
    Chembiochem; 2003 Sep; 4(9):870-7. PubMed ID: 12964162
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hsp90 is regulated by a switch point in the C-terminal domain.
    Retzlaff M; Stahl M; Eberl HC; Lagleder S; Beck J; Kessler H; Buchner J
    EMBO Rep; 2009 Oct; 10(10):1147-53. PubMed ID: 19696785
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones.
    Dollins DE; Warren JJ; Immormino RM; Gewirth DT
    Mol Cell; 2007 Oct; 28(1):41-56. PubMed ID: 17936703
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conserved conformational changes in the ATPase cycle of human Hsp90.
    Richter K; Soroka J; Skalniak L; Leskovar A; Hessling M; Reinstein J; Buchner J
    J Biol Chem; 2008 Jun; 283(26):17757-65. PubMed ID: 18400751
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site.
    Soti C; Vermes A; Haystead TA; Csermely P
    Eur J Biochem; 2003 Jun; 270(11):2421-8. PubMed ID: 12755697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Targeting the hydrophobic region of Hsp90's ATP binding pocket with novel 1,3,5-triazines.
    Lee T; Seo YH
    Bioorg Med Chem Lett; 2013 Dec; 23(23):6427-31. PubMed ID: 24125885
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dimerization of Hsp90 is required for in vivo function. Design and analysis of monomers and dimers.
    Wayne N; Bolon DN
    J Biol Chem; 2007 Nov; 282(48):35386-95. PubMed ID: 17908693
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solution structure of Plasmodium falciparum Hsp90 indicates a high flexible dimer.
    Silva NSM; Torricillas MS; Minari K; Barbosa LRS; Seraphim TV; Borges JC
    Arch Biochem Biophys; 2020 Sep; 690():108468. PubMed ID: 32679196
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gene expression and molecular characterization of a chaperone protein HtpG from Bacillus licheniformis.
    Lo HF; Chen BE; Lin MG; Chi MC; Wang TF; Lin LL
    Int J Biol Macromol; 2016 Apr; 85():179-91. PubMed ID: 26743745
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Liberation of the intramolecular interaction as the mechanism of heat-induced activation of HSP90 molecular chaperone.
    Tanaka E; Nemoto TK; Ono T
    Eur J Biochem; 2001 Oct; 268(20):5270-7. PubMed ID: 11606188
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone.
    Prodromou C; Roe SM; Piper PW; Pearl LH
    Nat Struct Biol; 1997 Jun; 4(6):477-82. PubMed ID: 9187656
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The activity of protein phosphatase 5 towards native clients is modulated by the middle- and C-terminal domains of Hsp90.
    Haslbeck V; Eckl JM; Drazic A; Rutz DA; Lorenz OR; Zimmermann K; Kriehuber T; Lindemann C; Madl T; Richter K
    Sci Rep; 2015 Nov; 5():17058. PubMed ID: 26593036
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The N-terminal adenosine triphosphate binding domain of Hsp90 is necessary and sufficient for interaction with estrogen receptor.
    Bouhouche-Chatelier L; Chadli A; Catelli MG
    Cell Stress Chaperones; 2001 Oct; 6(4):297-305. PubMed ID: 11795466
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure of the N-terminal domain of GRP94. Basis for ligand specificity and regulation.
    Soldano KL; Jivan A; Nicchitta CV; Gewirth DT
    J Biol Chem; 2003 Nov; 278(48):48330-8. PubMed ID: 12970348
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two closed ATP- and ADP-dependent conformations in yeast Hsp90 chaperone detected by Mn(II) EPR spectroscopic techniques.
    Giannoulis A; Feintuch A; Barak Y; Mazal H; Albeck S; Unger T; Yang F; Su XC; Goldfarb D
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):395-404. PubMed ID: 31862713
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Potential C-terminal-domain inhibitors of heat shock protein 90 derived from a C-terminal peptide helix.
    Gavenonis J; Jonas NE; Kritzer JA
    Bioorg Med Chem; 2014 Aug; 22(15):3989-93. PubMed ID: 24984936
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure of unliganded GRP94, the endoplasmic reticulum Hsp90. Basis for nucleotide-induced conformational change.
    Dollins DE; Immormino RM; Gewirth DT
    J Biol Chem; 2005 Aug; 280(34):30438-47. PubMed ID: 15951571
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of the ATP binding properties of Hsp90.
    Jakob U; Scheibel T; Bose S; Reinstein J; Buchner J
    J Biol Chem; 1996 Apr; 271(17):10035-41. PubMed ID: 8626558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.