BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22318725)

  • 1. Ubiquitin- and MDM2 E3 ligase-independent proteasomal turnover of nucleostemin in response to GTP depletion.
    Lo D; Dai MS; Sun XX; Zeng SX; Lu H
    J Biol Chem; 2012 Mar; 287(13):10013-10020. PubMed ID: 22318725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depletion of guanine nucleotides leads to the Mdm2-dependent proteasomal degradation of nucleostemin.
    Huang M; Itahana K; Zhang Y; Mitchell BS
    Cancer Res; 2009 Apr; 69(7):3004-12. PubMed ID: 19318567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleostemin: Another nucleolar "Twister" of the p53-MDM2 loop.
    Lo D; Lu H
    Cell Cycle; 2010 Aug; 9(16):3227-32. PubMed ID: 20703089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.
    Sparks A; Dayal S; Das J; Robertson P; Menendez S; Saville MK
    Oncogene; 2014 Sep; 33(38):4685-96. PubMed ID: 24121268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2.
    Dai MS; Sun XX; Lu H
    Mol Cell Biol; 2008 Jul; 28(13):4365-76. PubMed ID: 18426907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species regulate nucleostemin oligomerization and protein degradation.
    Huang M; Whang P; Chodaparambil JV; Pollyea DA; Kusler B; Xu L; Felsher DW; Mitchell BS
    J Biol Chem; 2011 Apr; 286(13):11035-46. PubMed ID: 21242306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MDM2 binding induces a conformational change in p53 that is opposed by heat-shock protein 90 and precedes p53 proteasomal degradation.
    Sasaki M; Nie L; Maki CG
    J Biol Chem; 2007 May; 282(19):14626-34. PubMed ID: 17363365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GNL3L depletion destabilizes MDM2 and induces p53-dependent G2/M arrest.
    Meng L; Hsu JK; Tsai RY
    Oncogene; 2011 Apr; 30(14):1716-26. PubMed ID: 21132010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2-M progression and cell survival.
    Meng L; Lin T; Tsai RY
    J Cell Sci; 2008 Dec; 121(Pt 24):4037-46. PubMed ID: 19033382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination.
    Nie L; Sasaki M; Maki CG
    J Biol Chem; 2007 May; 282(19):14616-25. PubMed ID: 17371868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of p53 and MDM2 activity by MTBP.
    Brady M; Vlatkovic N; Boyd MT
    Mol Cell Biol; 2005 Jan; 25(2):545-53. PubMed ID: 15632057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligomerization conditions Mdm2-mediated efficient p53 polyubiquitylation but not its proteasomal degradation.
    Hjerpe R; Aillet F; Lopitz-Otsoa F; Lang V; Torres-Ramos M; Farrás R; Hay RT; Rodríguez MS
    Int J Biochem Cell Biol; 2010 May; 42(5):725-35. PubMed ID: 20080206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the MDM2-p53 pathway by the nucleolar protein CSIG in response to nucleolar stress.
    Xie N; Ma L; Zhu F; Zhao W; Tian F; Yuan F; Fu J; Huang D; Lv C; Tong T
    Sci Rep; 2016 Nov; 6():36171. PubMed ID: 27811966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MDMX is essential for the regulation of p53 protein levels in the absence of a functional MDM2 C-terminal tail.
    Sanford JD; Yang J; Han J; Tollini LA; Jin A; Zhang Y
    BMC Mol Cell Biol; 2021 Sep; 22(1):46. PubMed ID: 34551723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled access of p53 to the nucleus regulates its proteasomal degradation by MDM2.
    Davis JR; Mossalam M; Lim CS
    Mol Pharm; 2013 Apr; 10(4):1340-9. PubMed ID: 23398638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MDMX promotes proteasomal turnover of p21 at G1 and early S phases independently of, but in cooperation with, MDM2.
    Jin Y; Zeng SX; Sun XX; Lee H; Blattner C; Xiao Z; Lu H
    Mol Cell Biol; 2008 Feb; 28(4):1218-29. PubMed ID: 18086887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics in the p53-Mdm2 ubiquitination pathway.
    Brooks CL; Gu W
    Cell Cycle; 2004 Jul; 3(7):895-9. PubMed ID: 15254415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53.
    Dayal S; Sparks A; Jacob J; Allende-Vega N; Lane DP; Saville MK
    J Biol Chem; 2009 Feb; 284(8):5030-41. PubMed ID: 19098288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53.
    Carter S; Bischof O; Dejean A; Vousden KH
    Nat Cell Biol; 2007 Apr; 9(4):428-35. PubMed ID: 17369817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation.
    Itahana K; Mao H; Jin A; Itahana Y; Clegg HV; Lindström MS; Bhat KP; Godfrey VL; Evan GI; Zhang Y
    Cancer Cell; 2007 Oct; 12(4):355-66. PubMed ID: 17936560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.