These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 22318766)
1. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems. Liu H; Venkatraman SS J Pharm Sci; 2012 May; 101(5):1783-93. PubMed ID: 22318766 [TBL] [Abstract][Full Text] [Related]
2. Poly(ethylene carbonate) as a surface-eroding biomaterial for in situ forming parenteral drug delivery systems: a feasibility study. Liu Y; Kemmer A; Keim K; Curdy C; Petersen H; Kissel T Eur J Pharm Biopharm; 2010 Oct; 76(2):222-9. PubMed ID: 20650316 [TBL] [Abstract][Full Text] [Related]
3. A novel in situ forming drug delivery system for controlled parenteral drug delivery. Kranz H; Bodmeier R Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability. Ahmed TA; Ibrahim HM; Samy AM; Kaseem A; Nutan MT; Hussain MD AAPS PharmSciTech; 2014 Jun; 15(3):772-80. PubMed ID: 24648158 [TBL] [Abstract][Full Text] [Related]
5. Effect of polymer type on the dynamics of phase inversion and drug release in injectable in situ gelling systems. Liu H; Venkatraman SS J Biomater Sci Polym Ed; 2012; 23(1-4):251-66. PubMed ID: 21244721 [TBL] [Abstract][Full Text] [Related]
6. Effect of Polymer Permeability and Solvent Removal Rate on Zhang X; Yang L; Zhang C; Liu D; Meng S; Zhang W; Meng S Pharmaceutics; 2019 Oct; 11(10):. PubMed ID: 31658642 [TBL] [Abstract][Full Text] [Related]
7. Investigation of Fragment Antibody Stability and Its Release Mechanism from Poly(Lactide-co-Glycolide)-Triacetin Depots for Sustained-Release Applications. Chang DP; Garripelli VK; Rea J; Kelley R; Rajagopal K J Pharm Sci; 2015 Oct; 104(10):3404-17. PubMed ID: 26099467 [TBL] [Abstract][Full Text] [Related]
8. Phase inversion dynamics of PLGA solutions related to drug delivery. Part II. The role of solution thermodynamics and bath-side mass transfer. Brodbeck KJ; DesNoyer JR; McHugh AJ J Control Release; 1999 Dec; 62(3):333-44. PubMed ID: 10528071 [TBL] [Abstract][Full Text] [Related]
9. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. Parent M; Nouvel C; Koerber M; Sapin A; Maincent P; Boudier A J Control Release; 2013 Nov; 172(1):292-304. PubMed ID: 24001947 [TBL] [Abstract][Full Text] [Related]
10. Solid/Hollow depots for drug delivery, part 1: effect of drug characteristics and polymer molecular weight on the phase-inversion dynamics, depot morphology, and drug release. Liu H; Venkatraman SS J Pharm Sci; 2014 Feb; 103(2):485-95. PubMed ID: 24357252 [TBL] [Abstract][Full Text] [Related]
11. Design of a long-term antipsychotic in situ forming implant and its release control method and mechanism. Wang L; Wang A; Zhao X; Liu X; Wang D; Sun F; Li Y Int J Pharm; 2012 May; 427(2):284-92. PubMed ID: 22387369 [TBL] [Abstract][Full Text] [Related]
12. Are in situ formulations the keys for the therapeutic future of S-nitrosothiols? Parent M; Boudier A; Dupuis F; Nouvel C; Sapin A; Lartaud I; Six JL; Leroy P; Maincent P Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):640-9. PubMed ID: 23954508 [TBL] [Abstract][Full Text] [Related]
13. Encapsulation of water-soluble drugs by an o/o/o-solvent extraction microencapsulation method. Elkharraz K; Ahmed AR; Dashevsky A; Bodmeier R Int J Pharm; 2011 May; 409(1-2):89-95. PubMed ID: 21356287 [TBL] [Abstract][Full Text] [Related]
14. Sustained release of human growth hormone from in situ forming hydrogels using self-assembly of fluoroalkyl-ended poly(ethylene glycol). Tae G; Kornfield JA; Hubbell JA Biomaterials; 2005 Sep; 26(25):5259-66. PubMed ID: 15792553 [TBL] [Abstract][Full Text] [Related]
15. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization. Camargo JA; Sapin A; Nouvel C; Daloz D; Leonard M; Bonneaux F; Six JL; Maincent P Drug Dev Ind Pharm; 2013 Jan; 39(1):146-55. PubMed ID: 22397675 [TBL] [Abstract][Full Text] [Related]
16. Study of an injectable in situ forming gel for sustained-release of Ivermectin in vitro and in vivo. Geng Z; Luo X; Zhang Z; Li H; Tian J; Yu Z Int J Biol Macromol; 2016 Apr; 85():271-6. PubMed ID: 26708436 [TBL] [Abstract][Full Text] [Related]
17. Injectable, in situ forming poly(propylene fumarate)-based ocular drug delivery systems. Ueda H; Hacker MC; Haesslein A; Jo S; Ammon DM; Borazjani RN; Kunzler JF; Salamone JC; Mikos AG J Biomed Mater Res A; 2007 Dec; 83(3):656-66. PubMed ID: 17514745 [TBL] [Abstract][Full Text] [Related]
18. Solvent exchange and drug release characteristics of doxycycline hyclate-loaded bleached shellac in situ-forming gel and -microparticle. Phaechamud T; Senarat S; Puyathorn N; Praphanwittaya P Int J Biol Macromol; 2019 Aug; 135():1261-1272. PubMed ID: 30448493 [TBL] [Abstract][Full Text] [Related]
19. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles. Kranz H; Bodmeier R Eur J Pharm Sci; 2008 Jul; 34(2-3):164-72. PubMed ID: 18501569 [TBL] [Abstract][Full Text] [Related]
20. Relevance of Frank's solvent classification as typically aqueous and typically non-aqueous to activities of firefly luciferase, alcohol dehydrogenase, and alpha-chymotrypsin in aqueous binaries. Fadnavis NW; Seshadri R; Sheelu G; Madhuri KV Arch Biochem Biophys; 2005 Jan; 433(2):454-65. PubMed ID: 15581602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]