BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22318766)

  • 1. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems.
    Liu H; Venkatraman SS
    J Pharm Sci; 2012 May; 101(5):1783-93. PubMed ID: 22318766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(ethylene carbonate) as a surface-eroding biomaterial for in situ forming parenteral drug delivery systems: a feasibility study.
    Liu Y; Kemmer A; Keim K; Curdy C; Petersen H; Kissel T
    Eur J Pharm Biopharm; 2010 Oct; 76(2):222-9. PubMed ID: 20650316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability.
    Ahmed TA; Ibrahim HM; Samy AM; Kaseem A; Nutan MT; Hussain MD
    AAPS PharmSciTech; 2014 Jun; 15(3):772-80. PubMed ID: 24648158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of polymer type on the dynamics of phase inversion and drug release in injectable in situ gelling systems.
    Liu H; Venkatraman SS
    J Biomater Sci Polym Ed; 2012; 23(1-4):251-66. PubMed ID: 21244721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Polymer Permeability and Solvent Removal Rate on
    Zhang X; Yang L; Zhang C; Liu D; Meng S; Zhang W; Meng S
    Pharmaceutics; 2019 Oct; 11(10):. PubMed ID: 31658642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Fragment Antibody Stability and Its Release Mechanism from Poly(Lactide-co-Glycolide)-Triacetin Depots for Sustained-Release Applications.
    Chang DP; Garripelli VK; Rea J; Kelley R; Rajagopal K
    J Pharm Sci; 2015 Oct; 104(10):3404-17. PubMed ID: 26099467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase inversion dynamics of PLGA solutions related to drug delivery. Part II. The role of solution thermodynamics and bath-side mass transfer.
    Brodbeck KJ; DesNoyer JR; McHugh AJ
    J Control Release; 1999 Dec; 62(3):333-44. PubMed ID: 10528071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release.
    Parent M; Nouvel C; Koerber M; Sapin A; Maincent P; Boudier A
    J Control Release; 2013 Nov; 172(1):292-304. PubMed ID: 24001947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid/Hollow depots for drug delivery, part 1: effect of drug characteristics and polymer molecular weight on the phase-inversion dynamics, depot morphology, and drug release.
    Liu H; Venkatraman SS
    J Pharm Sci; 2014 Feb; 103(2):485-95. PubMed ID: 24357252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a long-term antipsychotic in situ forming implant and its release control method and mechanism.
    Wang L; Wang A; Zhao X; Liu X; Wang D; Sun F; Li Y
    Int J Pharm; 2012 May; 427(2):284-92. PubMed ID: 22387369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are in situ formulations the keys for the therapeutic future of S-nitrosothiols?
    Parent M; Boudier A; Dupuis F; Nouvel C; Sapin A; Lartaud I; Six JL; Leroy P; Maincent P
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):640-9. PubMed ID: 23954508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encapsulation of water-soluble drugs by an o/o/o-solvent extraction microencapsulation method.
    Elkharraz K; Ahmed AR; Dashevsky A; Bodmeier R
    Int J Pharm; 2011 May; 409(1-2):89-95. PubMed ID: 21356287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained release of human growth hormone from in situ forming hydrogels using self-assembly of fluoroalkyl-ended poly(ethylene glycol).
    Tae G; Kornfield JA; Hubbell JA
    Biomaterials; 2005 Sep; 26(25):5259-66. PubMed ID: 15792553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization.
    Camargo JA; Sapin A; Nouvel C; Daloz D; Leonard M; Bonneaux F; Six JL; Maincent P
    Drug Dev Ind Pharm; 2013 Jan; 39(1):146-55. PubMed ID: 22397675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of an injectable in situ forming gel for sustained-release of Ivermectin in vitro and in vivo.
    Geng Z; Luo X; Zhang Z; Li H; Tian J; Yu Z
    Int J Biol Macromol; 2016 Apr; 85():271-6. PubMed ID: 26708436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable, in situ forming poly(propylene fumarate)-based ocular drug delivery systems.
    Ueda H; Hacker MC; Haesslein A; Jo S; Ammon DM; Borazjani RN; Kunzler JF; Salamone JC; Mikos AG
    J Biomed Mater Res A; 2007 Dec; 83(3):656-66. PubMed ID: 17514745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent exchange and drug release characteristics of doxycycline hyclate-loaded bleached shellac in situ-forming gel and -microparticle.
    Phaechamud T; Senarat S; Puyathorn N; Praphanwittaya P
    Int J Biol Macromol; 2019 Aug; 135():1261-1272. PubMed ID: 30448493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles.
    Kranz H; Bodmeier R
    Eur J Pharm Sci; 2008 Jul; 34(2-3):164-72. PubMed ID: 18501569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relevance of Frank's solvent classification as typically aqueous and typically non-aqueous to activities of firefly luciferase, alcohol dehydrogenase, and alpha-chymotrypsin in aqueous binaries.
    Fadnavis NW; Seshadri R; Sheelu G; Madhuri KV
    Arch Biochem Biophys; 2005 Jan; 433(2):454-65. PubMed ID: 15581602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.