These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 22319049)

  • 1. Homeostatic regulation of protein intake: in search of a mechanism.
    Morrison CD; Reed SD; Henagan TM
    Am J Physiol Regul Integr Comp Physiol; 2012 Apr; 302(8):R917-28. PubMed ID: 22319049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-dependent regulation of feeding and metabolism.
    Morrison CD; Laeger T
    Trends Endocrinol Metab; 2015 May; 26(5):256-62. PubMed ID: 25771038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of protein and energy intake - brain mechanisms.
    Davidenko O; Darcel N; Fromentin G; Tomé D
    Eur J Clin Nutr; 2013 May; 67(5):455-61. PubMed ID: 23636122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins.
    Fromentin G; Darcel N; Chaumontet C; Marsset-Baglieri A; Nadkarni N; Tomé D
    Nutr Res Rev; 2012 Jun; 25(1):29-39. PubMed ID: 22643031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homeostatic sensing of dietary protein restriction: A case for FGF21.
    Hill CM; Berthoud HR; Münzberg H; Morrison CD
    Front Neuroendocrinol; 2018 Oct; 51():125-131. PubMed ID: 29890191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein status modulates the rewarding value of foods and meals to maintain an adequate protein intake.
    Tomé D; Chaumontet C; Even PC; Darcel N; Azzout-Marniche D
    Physiol Behav; 2019 Jul; 206():7-12. PubMed ID: 30902631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein/energy ratios of current diets in developed and developing countries compared with a safe protein/energy ratio: implications for recommended protein and amino acid intakes.
    Millward DJ; Jackson AA
    Public Health Nutr; 2004 May; 7(3):387-405. PubMed ID: 15153271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homeostatic and non-homeostatic controls of feeding behavior: Distinct vs. common neural systems.
    Liu CM; Kanoski SE
    Physiol Behav; 2018 Sep; 193(Pt B):223-231. PubMed ID: 29421588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary influences on alcohol intake: a review.
    Forsander OA
    J Stud Alcohol; 1998 Jan; 59(1):26-31. PubMed ID: 9498312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain on food: The neuroepigenetics of nutrition.
    Vaziri A; Dus M
    Neurochem Int; 2021 Oct; 149():105099. PubMed ID: 34133954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of energy balance and body weight by the brain: a distributed system prone to disruption.
    Faulconbridge LF; Hayes MR
    Psychiatr Clin North Am; 2011 Dec; 34(4):733-45. PubMed ID: 22098800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homeostatic and non-homeostatic pathways involved in the control of food intake and energy balance.
    Berthoud HR
    Obesity (Silver Spring); 2006 Aug; 14 Suppl 5():197S-200S. PubMed ID: 17021366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cingulate lesions and behavioral adaptation to amino acid imbalanced diets.
    Meliza LL; Leung PM; Rogers QR
    Physiol Behav; 1983 Feb; 30(2):243-6. PubMed ID: 6405412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hippocampal lesions on adaptive intake of diets with disproportionate amounts of amino acids.
    Leung PM; Rogers QR
    Physiol Behav; 1979 Jul; 23(1):129-36. PubMed ID: 515202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary self-selection and the regulation of protein and energy intake in chicks.
    Elkin RG; Ndife LI; Rogler JC
    Physiol Behav; 1985 May; 34(5):743-9. PubMed ID: 4034714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein, amino acids and the control of food intake.
    Tome D
    Br J Nutr; 2004 Aug; 92 Suppl 1():S27-30. PubMed ID: 15384319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores.
    Maurin AC; Jousse C; Averous J; Parry L; Bruhat A; Cherasse Y; Zeng H; Zhang Y; Harding HP; Ron D; Fafournoux P
    Cell Metab; 2005 Apr; 1(4):273-7. PubMed ID: 16054071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward.
    Olszewski PK; Fredriksson R; Olszewska AM; Stephansson O; Alsiö J; Radomska KJ; Levine AS; Schiöth HB
    BMC Neurosci; 2009 Oct; 10():129. PubMed ID: 19860904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ad libitum food intake on a "cafeteria diet" in Native American women: relations with body composition and 24-h energy expenditure.
    Larson DE; Tataranni PA; Ferraro RT; Ravussin E
    Am J Clin Nutr; 1995 Nov; 62(5):911-7. PubMed ID: 7572735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis.
    Havel PJ
    Exp Biol Med (Maywood); 2001 Dec; 226(11):963-77. PubMed ID: 11743131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.