These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 22319152)
1. Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions. Colletier JP; Aleksandrov A; Coquelle N; Mraihi S; Mendoza-Barberá E; Field M; Madern D Mol Biol Evol; 2012 Jun; 29(6):1683-94. PubMed ID: 22319152 [TBL] [Abstract][Full Text] [Related]
2. Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. Coquelle N; Fioravanti E; Weik M; Vellieux F; Madern D J Mol Biol; 2007 Nov; 374(2):547-62. PubMed ID: 17936781 [TBL] [Abstract][Full Text] [Related]
3. Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Johns GC; Somero GN Mol Biol Evol; 2004 Feb; 21(2):314-20. PubMed ID: 14660697 [TBL] [Abstract][Full Text] [Related]
4. The Simple and Unique Allosteric Machinery of Thermus caldophilus Lactate Dehydrogenase : Structure-Function Relationship in Bacterial Allosteric LDHs. Taguchi H Adv Exp Med Biol; 2017; 925():117-145. PubMed ID: 27815924 [TBL] [Abstract][Full Text] [Related]
5. The core of allosteric motion in Thermus caldophilus L-lactate dehydrogenase. Ikehara Y; Arai K; Furukawa N; Ohno T; Miyake T; Fushinobu S; Nakajima M; Miyanaga A; Taguchi H J Biol Chem; 2014 Nov; 289(45):31550-64. PubMed ID: 25258319 [TBL] [Abstract][Full Text] [Related]
6. Substitutions of coenzyme-binding, nonpolar residues improve the low-temperature activity of thermophilic dehydrogenases. Hayashi S; Akanuma S; Onuki W; Tokunaga C; Yamagishi A Biochemistry; 2011 Oct; 50(40):8583-93. PubMed ID: 21894900 [TBL] [Abstract][Full Text] [Related]
7. Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus. Fields PA; Houseman DE Mol Biol Evol; 2004 Dec; 21(12):2246-55. PubMed ID: 15317880 [TBL] [Abstract][Full Text] [Related]
8. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state. Wallgren M; Adén J; Pylypenko O; Mikaelsson T; Johansson LB; Rak A; Wolf-Watz M J Mol Biol; 2008 Jun; 379(4):845-58. PubMed ID: 18471828 [TBL] [Abstract][Full Text] [Related]
9. Evolution of lactate dehydrogenase-A homologs of barracuda fishes (genus Sphyraena) from different thermal environments: differences in kinetic properties and thermal stability are due to amino acid substitutions outside the active site. Holland LZ; McFall-Ngai M; Somero GN Biochemistry; 1997 Mar; 36(11):3207-15. PubMed ID: 9115998 [TBL] [Abstract][Full Text] [Related]
10. Mutagenic studies on histidine 98 of methylglyoxal synthase: effects on mechanism and conformational change. Marks GT; Susler M; Harrison DH Biochemistry; 2004 Apr; 43(13):3802-13. PubMed ID: 15049687 [TBL] [Abstract][Full Text] [Related]
11. Dual Role of the Active Site Residues of Thermus thermophilus 3-Isopropylmalate Dehydrogenase: Chemical Catalysis and Domain Closure. Gráczer É; Szimler T; Garamszegi A; Konarev PV; Lábas A; Oláh J; Palló A; Svergun DI; Merli A; Závodszky P; Weiss MS; Vas M Biochemistry; 2016 Jan; 55(3):560-74. PubMed ID: 26731489 [TBL] [Abstract][Full Text] [Related]
12. Conserved active site aspartates and domain-domain interactions in regulatory properties of the sugar kinase superfamily. Pettigrew DW; Smith GB; Thomas KP; Dodds DC Arch Biochem Biophys; 1998 Jan; 349(2):236-45. PubMed ID: 9448710 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Dombrauckas JD; Santarsiero BD; Mesecar AD Biochemistry; 2005 Jul; 44(27):9417-29. PubMed ID: 15996096 [TBL] [Abstract][Full Text] [Related]
14. Free energy surface of the Michaelis complex of lactate dehydrogenase: a network analysis of microsecond simulations. Pan X; Schwartz SD J Phys Chem B; 2015 Apr; 119(17):5430-6. PubMed ID: 25831215 [TBL] [Abstract][Full Text] [Related]
16. Guided evolution of enzymes with new substrate specificities. el Hawrani AS; Sessions RB; Moreton KM; Holbrook JJ J Mol Biol; 1996 Nov; 264(1):97-110. PubMed ID: 8950270 [TBL] [Abstract][Full Text] [Related]
17. Urea-induced unfolding and conformational stability of 3-isopropylmalate dehydrogenase from the Thermophile thermus thermophilus and its mesophilic counterpart from Escherichia coli. Motono C; Yamagishi A; Oshima T Biochemistry; 1999 Jan; 38(4):1332-7. PubMed ID: 9930995 [TBL] [Abstract][Full Text] [Related]
18. Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis. Gu SA; Jun C; Joo JC; Kim S; Lee SH; Kim YH Enzyme Microb Technol; 2014 May; 58-59():29-35. PubMed ID: 24731822 [TBL] [Abstract][Full Text] [Related]
19. Structure of Toxoplasma gondii LDH1: active-site differences from human lactate dehydrogenases and the structural basis for efficient APAD+ use. Kavanagh KL; Elling RA; Wilson DK Biochemistry; 2004 Feb; 43(4):879-89. PubMed ID: 14744130 [TBL] [Abstract][Full Text] [Related]
20. Proton donor in yeast pyruvate kinase: chemical and kinetic properties of the active site Thr 298 to Cys mutant. Susan-Resiga D; Nowak T Biochemistry; 2004 Dec; 43(48):15230-45. PubMed ID: 15568816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]