BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 22319171)

  • 1. An ancestral miR-1304 allele present in Neanderthals regulates genes involved in enamel formation and could explain dental differences with modern humans.
    Lopez-Valenzuela M; Ramírez O; Rosas A; García-Vargas S; de la Rasilla M; Lalueza-Fox C; Espinosa-Parrilla Y
    Mol Biol Evol; 2012 Jul; 29(7):1797-806. PubMed ID: 22319171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neanderthal and Denisova tooth protein variants in present-day humans.
    Zanolli C; Hourset M; Esclassan R; Mollereau C
    PLoS One; 2017; 12(9):e0183802. PubMed ID: 28902892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals.
    Glazov EA; McWilliam S; Barris WC; Dalrymple BP
    Mol Biol Evol; 2008 May; 25(5):939-48. PubMed ID: 18281269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target identification of microRNAs expressed highly in human embryonic stem cells.
    Li SS; Yu SL; Kao LP; Tsai ZY; Singh S; Chen BZ; Ho BC; Liu YH; Yang PC
    J Cell Biochem; 2009 Apr; 106(6):1020-30. PubMed ID: 19229866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-25 functions in regulation of pigmentation by targeting the transcription factor MITF in Alpaca (Lama pacos) skin melanocytes.
    Zhu Z; He J; Jia X; Jiang J; Bai R; Yu X; Lv L; Fan R; He X; Geng J; You R; Dong Y; Qiao D; Lee KB; Smith GW; Dong C
    Domest Anim Endocrinol; 2010 Apr; 38(3):200-9. PubMed ID: 20036482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neanderthal and Denisova genetic affinities with contemporary humans: introgression versus common ancestral polymorphisms.
    Lowery RK; Uribe G; Jimenez EB; Weiss MA; Herrera KJ; Regueiro M; Herrera RJ
    Gene; 2013 Nov; 530(1):83-94. PubMed ID: 23872234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction and verification of miRNA expression in human and rat retinas.
    Arora A; McKay GJ; Simpson DA
    Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):3962-7. PubMed ID: 17724173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental identification of microRNA targets on the 3' untranslated region of human FMR1 gene.
    Yi YH; Sun XS; Qin JM; Zhao QH; Liao WP; Long YS
    J Neurosci Methods; 2010 Jun; 190(1):34-8. PubMed ID: 20435064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Variations in MicroRNA-Binding Sites Affect MicroRNA-Mediated Regulation of Several Genes Associated With Cardio-metabolic Phenotypes.
    Ghanbari M; Franco OH; de Looper HW; Hofman A; Erkeland SJ; Dehghan A
    Circ Cardiovasc Genet; 2015 Jun; 8(3):473-86. PubMed ID: 25814643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells.
    Greco SJ; Rameshwar P
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15484-9. PubMed ID: 17855557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-specific microRNA regulation of FOXO1: implications for microRNA recognition element evolution.
    McLoughlin HS; Wan J; Spengler RM; Xing Y; Davidson BL
    Hum Mol Genet; 2014 May; 23(10):2593-603. PubMed ID: 24368418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primate microRNAs miR-220 and miR-492 lie within processed pseudogenes.
    Devor EJ
    J Hered; 2006; 97(2):186-90. PubMed ID: 16489141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural selection on human microRNA binding sites inferred from SNP data.
    Chen K; Rajewsky N
    Nat Genet; 2006 Dec; 38(12):1452-6. PubMed ID: 17072316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Following the LINEs: an analysis of primate genomic variation at human-specific LINE-1 insertion sites.
    Vincent BJ; Myers JS; Ho HJ; Kilroy GE; Walker JA; Watkins WS; Jorde LB; Batzer MA
    Mol Biol Evol; 2003 Aug; 20(8):1338-48. PubMed ID: 12777507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allele-specific targeting of hsa-miR-657 to human IGF2R creates a potential mechanism underlying the association of ACAA-insertion/deletion polymorphism with type 2 diabetes.
    Lv K; Guo Y; Zhang Y; Wang K; Jia Y; Sun S
    Biochem Biophys Res Commun; 2008 Sep; 374(1):101-5. PubMed ID: 18602895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of target genes and pathways associated with chicken microRNA miR-143.
    Trakooljul N; Hicks JA; Liu HC
    Anim Genet; 2010 Aug; 41(4):357-64. PubMed ID: 20064147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis.
    Gong J; Tong Y; Zhang HM; Wang K; Hu T; Shan G; Sun J; Guo AY
    Hum Mutat; 2012 Jan; 33(1):254-63. PubMed ID: 22045659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico analysis of microRNAS targeting the HLA-G 3' untranslated region alleles and haplotypes.
    Castelli EC; Moreau P; Oya e Chiromatzo A; Mendes-Junior CT; Veiga-Castelli LC; Yaghi L; Giuliatti S; Carosella ED; Donadi EA
    Hum Immunol; 2009 Dec; 70(12):1020-5. PubMed ID: 19664672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the fate of microRNA target genes based on sequence features.
    Pei Y; Wang X; Zhang X
    J Theor Biol; 2009 Nov; 261(1):17-22. PubMed ID: 19643113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep conservation of microRNA-target relationships and 3'UTR motifs in vertebrates, flies, and nematodes.
    Chen K; Rajewsky N
    Cold Spring Harb Symp Quant Biol; 2006; 71():149-56. PubMed ID: 17381291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.