These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22319275)

  • 1. Active ground optical remote sensing for improved monitoring of seedling stress in nurseries.
    Eitel JU; Keefe RF; Long DS; Davis AS; Vierling LA
    Sensors (Basel); 2010; 10(4):2843-50. PubMed ID: 22319275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water availability influences morphology, mycorrhizal associations, PSII efficiency and polyamine metabolism at early growth phase of Scots pine seedlings.
    Muilu-Mäkelä R; Vuosku J; Läärä E; Saarinen M; Heiskanen J; Häggman H; Sarjala T
    Plant Physiol Biochem; 2015 Mar; 88():70-81. PubMed ID: 25666263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential response of Scots pine seedlings to variable intensity and ratio of red and far-red light.
    Razzak A; Ranade SS; Strand Å; García-Gil MR
    Plant Cell Environ; 2017 Aug; 40(8):1332-1340. PubMed ID: 28108999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of multiple stresses in Scots pine growing at post-mining sites using visible to near-infrared spectroscopy.
    Zuzana L; Lukáš B; Lucie K; Veronika K; Markéta P; Jan M; Aleš K; Monika K; Jana A
    Environ Sci Process Impacts; 2013 Oct; 15(11):2004-15. PubMed ID: 24108147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of below-ground competition during early stages of secondary succession: the case of 3-year-old Scots pine (Pinus sylvestris L.) seedlings in an abandoned grassland.
    Picon-Cochard C; Coll L; Balandier P
    Oecologia; 2006 Jun; 148(3):373-83. PubMed ID: 16489460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study on relationships between total chlorophyll with hyperspectral features for leaves of Pinus massoniana forest].
    Du HQ; Ge HL; Fan WY; Jin W; Zhou YF; Li J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3033-7. PubMed ID: 20101980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of organic and inorganic nitrogen uptake in Scots pine (Pinus sylvestris) seedlings.
    Ohlund J; Näsholm T
    Tree Physiol; 2004 Dec; 24(12):1397-402. PubMed ID: 15465702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [High-spectral responses of Myrica rubra seedlings to UV-B radiation stress].
    Jin XJ; Jiang H; Chen J; Shi QL; Zhang QQ
    Ying Yong Sheng Tai Xue Bao; 2012 Dec; 23(12):3338-46. PubMed ID: 23479875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Changes of reflectance spectra of pine needles in different stage after being infected by pine wood nematode].
    Xu HC; Luo YQ; Zhang TT; Shi YJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 May; 31(5):1352-6. PubMed ID: 21800599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Winter survival of Scots pine seedlings under different snow conditions.
    Domisch T; Martz F; Repo T; Rautio P
    Tree Physiol; 2018 Apr; 38(4):602-616. PubMed ID: 29040799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical acclimation patterns of Betula pendula and Pinus sylvestris seedlings to elevated carbon dioxide concentrations.
    Juurola E
    Tree Physiol; 2003 Feb; 23(2):85-95. PubMed ID: 12533303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of prolonged drought stress on Scots pine seedling carbon allocation.
    Aaltonen H; Lindén A; Heinonsalo J; Biasi C; Pumpanen J
    Tree Physiol; 2017 Apr; 37(4):418-427. PubMed ID: 27974653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation energy partitioning and quenching during cold acclimation in Scots pine.
    Sveshnikov D; Ensminger I; Ivanov AG; Campbell D; Lloyd J; Funk C; Hüner NP; Oquist G
    Tree Physiol; 2006 Mar; 26(3):325-36. PubMed ID: 16356904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early growth of Scots pine seedlings is affected by seed origin and light quality.
    Alakärppä E; Taulavuori E; Valledor L; Marttila T; Jokipii-Lukkari S; Karppinen K; Nguyen N; Taulavuori K; Häggman H
    J Plant Physiol; 2019 Jun; 237():120-128. PubMed ID: 31078909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seed germination and seedling growth of Scots pine in technogenically polluted soils as container media.
    Makhniova S; Mohnachev P; Ayan S
    Environ Monit Assess; 2019 Jan; 191(2):113. PubMed ID: 30693379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of excessive Cu on photosynthesis and growth in ectomycorrhizal Pinus sylvestris seedlings.
    Huang Y; Tao S
    J Environ Sci (China); 2004; 16(3):414-9. PubMed ID: 15272714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecotypic variation in response to light spectra in Scots pine (Pinus sylvestris L.).
    Ranade SS; García-Gil MR
    Tree Physiol; 2013 Feb; 33(2):195-201. PubMed ID: 23392595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of stand density and canopy structure on the germination and growth of Scots pine (Pinus sylvestris L.) seedlings.
    Kara F; Topaçoğlu O
    Environ Monit Assess; 2018 Nov; 190(12):749. PubMed ID: 30498861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short delay in timing of emergence determines establishment success in Pinus sylvestris across microhabitats.
    Castro J
    Ann Bot; 2006 Dec; 98(6):1233-40. PubMed ID: 17056614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation induced by a surfactant leads to a transient release of water stress and subsequent 'run away' embolism in Scots pine (Pinus sylvestris) seedlings.
    Hölttä T; Juurola E; Lindfors L; Porcar-Castell A
    J Exp Bot; 2012 Jan; 63(2):1057-67. PubMed ID: 22039297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.