BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22319293)

  • 1. A new myohaptic instrument to assess wrist motion dynamically.
    Manto M; Van Den Braber N; Grimaldi G; Lammertse P
    Sensors (Basel); 2010; 10(4):3180-94. PubMed ID: 22319293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of wrist rotations.
    Charles SK; Hogan N
    J Biomech; 2011 Feb; 44(4):614-21. PubMed ID: 21130996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematics of wrist joint flexion in overarm throws made by skilled subjects.
    Debicki DB; Gribble PL; Watts S; Hore J
    Exp Brain Res; 2004 Feb; 154(3):382-94. PubMed ID: 14598003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a torque-controlled manipulator to analyse the admittance of the wrist joint.
    Schouten AC; de Vlugt E; van Hilten JJ; van der Helm FC
    J Neurosci Methods; 2006 Jun; 154(1-2):134-41. PubMed ID: 16434105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of wrist and forearm rotations.
    Peaden AW; Charles SK
    J Biomech; 2014 Aug; 47(11):2779-85. PubMed ID: 24745814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo estimation of the short-range stiffness of cross-bridges from joint rotation.
    van Eesbeek S; de Groot JH; van der Helm FC; de Vlugt E
    J Biomech; 2010 Sep; 43(13):2539-47. PubMed ID: 20541761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human wrist motors: biomechanical design and application to tendon transfers.
    Loren GJ; Shoemaker SD; Burkholder TJ; Jacobson MD; Fridén J; Lieber RL
    J Biomech; 1996 Mar; 29(3):331-42. PubMed ID: 8850639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical control of different elbow-wrist coordination patterns.
    Dounskaia NV; Swinnen SP; Walter CB; Spaepen AJ; Verschueren SM
    Exp Brain Res; 1998 Aug; 121(3):239-54. PubMed ID: 9746130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new, transportable ergometer for the measurement of musculotendinous stiffness during wrist flexion.
    Stephan E; Delanaud S; Bisch C; Libert JP; Telliez F
    J Electromyogr Kinesiol; 2008 Feb; 18(1):160-8. PubMed ID: 16990011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-contraction of the pronator teres and extensor carpi radialis during wrist extension movements in humans.
    Fujii H; Kobayashi S; Sato T; Shinozaki K; Naito A
    J Electromyogr Kinesiol; 2007 Feb; 17(1):80-9. PubMed ID: 16516494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the wrist in three-joint arm movements to multiple directions in the horizontal plane.
    Koshland GF; Galloway JC; Nevoret-Bell CJ
    J Neurophysiol; 2000 May; 83(5):3188-95. PubMed ID: 10805717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative evaluation of cerebellar ataxia based on pathological patterns of the muscle activities.
    Lee J; Kagamihara Y; Kakei S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():902-5. PubMed ID: 24109834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergy matrices to extract fluid wrist motion intents via surface electromyography.
    Choi C; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3511-4. PubMed ID: 21097033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the Muscular and Kinematic Responses to Sudden Wrist Perturbations During a Dynamic Tracking Task.
    Forman GN; Forman DA; Avila-Mireles EJ; Zenzeri J; Holmes MWR
    Sci Rep; 2020 Mar; 10(1):4161. PubMed ID: 32139793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damping of the wrist joint during voluntary movement.
    Milner TE; Cloutier C
    Exp Brain Res; 1998 Oct; 122(3):309-17. PubMed ID: 9808304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromyographic and biomechanical characteristics of segmental postural adjustments associated with voluntary wrist movements. Influence of an elbow support.
    Chabran E; Maton B; Ribreau C; Fourment A
    Exp Brain Res; 2001 Nov; 141(2):133-45. PubMed ID: 11713625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human motor control consequences of thixotropic changes in muscular short-range stiffness.
    Axelson HW; Hagbarth KE
    J Physiol; 2001 Aug; 535(Pt 1):279-88. PubMed ID: 11507177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Counteractive relationship between the interaction torque and muscle torque at the wrist is predestined in ball-throwing.
    Hirashima M; Ohgane K; Kudo K; Hase K; Ohtsuki T
    J Neurophysiol; 2003 Sep; 90(3):1449-63. PubMed ID: 12966174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromechanical control of the forearm muscles during gripping with sudden flexion and extension wrist perturbations.
    Holmes MW; Tat J; Keir PJ
    Comput Methods Biomech Biomed Engin; 2015; 18(16):1826-34. PubMed ID: 25373932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [COMPARATIVE ANALYSIS OF ELECTROMYOGRAPHIC MUSCLE ACTIVITY OF THE HUMAN HAND DURING CYCLIC TURNS OF ISOMETRIC EFFORT VECTOR OF WRIST IN OPPOSITE DIRECTIONS].
    Lehedza AV; Gorkovenko AV; Vereshchaka IV; Dornowski M; Kostyukov AI
    Fiziol Zh (1994); 2015; 61(2):3-14. PubMed ID: 26387155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.