These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22319405)

  • 1. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods.
    Llorens J; Gil E; Llop J; Escolà A
    Sensors (Basel); 2011; 11(2):2177-94. PubMed ID: 22319405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the Suitability of a Terrestrial 2D LiDAR Scanner for Canopy Characterization of Greenhouse Tomato Crops.
    Llop J; Gil E; Llorens J; Miranda-Fuentes A; Gallart M
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27608025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS.
    Yuan W; Li J; Bhatta M; Shi Y; Baenziger PS; Ge Y
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of an ultrasonic ranging sensor in apple tree canopies.
    Escolà A; Planas S; Rosell JR; Pomar J; Camp F; Solanelles F; Gracia F; Llorens J; Gil E
    Sensors (Basel); 2011; 11(3):2459-77. PubMed ID: 22163749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Georeferenced LiDAR 3D vine plantation map generation.
    Llorens J; Gil E; Llop J; Queraltó M
    Sensors (Basel); 2011; 11(6):6237-56. PubMed ID: 22163952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Crop Canopy Localization Method Based on Ultrasonic Ranging and Iterative Self-Organizing Data Analysis Technique Algorithm.
    Li F; Bai X; Li Y
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32028735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on Estimating Rice Canopy Height and LAI Based on LiDAR Data.
    Jing L; Wei X; Song Q; Wang F
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibrating ultrasonic sensor measurements of crop canopy heights: a case study of maize and wheat.
    Zheng Y; Hui X; Cai D; Shoukat MR; Wang Y; Wang Z; Ma F; Yan H
    Front Plant Sci; 2024; 15():1354359. PubMed ID: 38903436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying.
    Gil E; Llorens J; Llop J; Fàbregas X; Gallart M
    Sensors (Basel); 2013 Jan; 13(1):516-34. PubMed ID: 23282583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System.
    Moreno H; Valero C; Bengochea-Guevara JM; Ribeiro Á; Garrido-Izard M; Andújar D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Vineyard Canopy Characteristics from Vigour Maps Obtained Using UAV and Satellite Imagery.
    Campos J; García-Ruíz F; Gil E
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of LiDAR in Agriculture and Future Research Directions.
    Debnath S; Paul M; Debnath T
    J Imaging; 2023 Feb; 9(3):. PubMed ID: 36976108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patch spraying: future role of electronics in limiting pesticide use.
    Miller PC
    Pest Manag Sci; 2003 May; 59(5):566-74. PubMed ID: 12741525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CMPC: An Innovative Lidar-Based Method to Estimate Tree Canopy Meshing-Profile Volumes for Orchard Target-Oriented Spray.
    Gu C; Zhai C; Wang X; Wang S
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-D modeling of tomato canopies using a high-resolution portable scanning lidar for extracting structural information.
    Hosoi F; Nakabayashi K; Omasa K
    Sensors (Basel); 2011; 11(2):2166-2174. PubMed ID: 22319403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bases for pesticide dose expression and adjustment in 3D crops and comparison of decision support systems.
    Planas S; Román C; Sanz R; Rosell-Polo JR
    Sci Total Environ; 2022 Feb; 806(Pt 1):150357. PubMed ID: 34560454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A LiDAR Sensor-Based Spray Boom Height Detection Method and the Corresponding Experimental Validation.
    Dou H; Wang S; Zhai C; Chen L; Wang X; Zhao X
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable ultrasonic sensing system for targeted spraying in orchards.
    Stajnko D; Berk P; Lešnik M; Jejčič V; Lakota M; Strancar A; Hočevar M; Rakun J
    Sensors (Basel); 2012 Nov; 12(11):15500-19. PubMed ID: 23202220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative efficiencies of experimental and conventional foliar sprayers and assessment of optimal LWA spray volumes in trellised wine grapes.
    Gil E; Salcedo R; Soler A; Ortega P; Llop J; Campos J; Oliva J
    Pest Manag Sci; 2021 May; 77(5):2462-2476. PubMed ID: 33442942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing accuracy of long-range ultrasonic sensors for olive tree canopy measurements.
    Gamarra-Diezma JL; Miranda-Fuentes A; Llorens J; Cuenca A; Blanco-Roldán GL; Rodríguez-Lizana A
    Sensors (Basel); 2015 Jan; 15(2):2902-19. PubMed ID: 25635414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.