These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22319407)

  • 1. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.
    Lee CY; Lee SJ; Shen CC; Yeh CT; Chang CC; Lo YM
    Sensors (Basel); 2011; 11(2):2246-56. PubMed ID: 22319407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of a flexible micro temperature sensor for micro reformer applications.
    Lee CY; Lin CH; Lo YM
    Sensors (Basel); 2011; 11(4):3706-16. PubMed ID: 22163817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of a flexible micro CO sensor for micro reformer applications.
    Lee CY; Chang CC; Lo YM
    Sensors (Basel); 2010; 10(12):10701-13. PubMed ID: 22163494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.
    Zhang S; Zhang Y; Chen J; Zhang X; Liu X
    PLoS One; 2017; 12(11):e0187802. PubMed ID: 29121067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.
    Fong CF; Dai CL; Wu CC
    Sensors (Basel); 2015 Oct; 15(10):27047-59. PubMed ID: 26512671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.
    Kim T; Hwang JS; Kwon S
    Lab Chip; 2007 Jul; 7(7):835-41. PubMed ID: 17594001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysts for Hydrogen Generation via Oxy-Steam Reforming of Methanol Process.
    Mosińska M; Szynkowska-Jóźwik MI; Mierczyński P
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Standalone ethanol micro-reformer integrated on silicon technology for onboard production of hydrogen-rich gas.
    Pla D; Salleras M; Morata A; Garbayo I; Gerbolés M; Sabaté N; Divins NJ; Casanovas A; Llorca J; Tarancón A
    Lab Chip; 2016 Aug; 16(15):2900-10. PubMed ID: 27378399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.
    Lee CY; Lee SJ; Tang MS; Chen PC
    Sensors (Basel); 2011; 11(10):9942-50. PubMed ID: 22163735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors.
    Lee CY; Fan WY; Chang CP
    Sensors (Basel); 2011; 11(2):1418-32. PubMed ID: 22319361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Swiss-Roll-Type Methanol Mini-Steam Reformer for Hydrogen Generation with High Efficiency and Long-Term Durability.
    Tseng FG; Chiu WC; Huang PJ
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermochemical Performance Analysis of the Steam Reforming of Methane in a Fixed Bed Membrane Reformer: A Modelling and Simulation Study.
    de Medeiros JPF; da Fonseca Dias V; da Silva JM; da Silva JD
    Membranes (Basel); 2020 Dec; 11(1):. PubMed ID: 33374497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel reforming method for hydrogen production from biomass steam gasification.
    Gao N; Li A; Quan C
    Bioresour Technol; 2009 Sep; 100(18):4271-7. PubMed ID: 19395255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and operation performance of the plate-heat transfer type hydrogen production reactor for bio-methanol reforming.
    Liu H; Li Y; Lu C; Zhang Z; Xiang G; Yang X; Zhang Q
    Bioresour Technol; 2023 Oct; 386():129509. PubMed ID: 37473786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-Rich Gas Production by Steam Reforming and Oxidative Steam Reforming of Methanol over La
    Morales M; Laguna-Bercero MÁ; Jiménez-Piqué E
    ACS Appl Energy Mater; 2023 Aug; 6(15):7887-7898. PubMed ID: 37592929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in Methanol Steam Reforming Modelling via Membrane Reactors Technology.
    Iulianelli A; Ghasemzadeh K; Basile A
    Membranes (Basel); 2018 Aug; 8(3):. PubMed ID: 30126137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal Characterization-Based Prognostics for Micro-Direct-Methanol Fuel Cells under Dynamic Operating Conditions.
    Zhang D; Li X; Wang W; Zhao Z
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless remote weather monitoring system based on MEMS technologies.
    Ma RH; Wang YH; Lee CY
    Sensors (Basel); 2011; 11(3):2715-27. PubMed ID: 22163762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steam reforming of biodiesel by-product to make renewable hydrogen.
    Slinn M; Kendall K; Mallon C; Andrews J
    Bioresour Technol; 2008 Sep; 99(13):5851-8. PubMed ID: 18032034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, optimization and application of reformer in a marine natural gas engine: A numerical and experimental study.
    Huang Y; Zhang Z; Zhang Y; Wei W; Zhou L; Li G; Xu W; Zheng Y; Song W
    Sci Total Environ; 2023 Sep; 892():164542. PubMed ID: 37271386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.