BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 22319443)

  • 1. Msb2 shedding protects Candida albicans against antimicrobial peptides.
    Szafranski-Schneider E; Swidergall M; Cottier F; Tielker D; Román E; Pla J; Ernst JF
    PLoS Pathog; 2012 Feb; 8(2):e1002501. PubMed ID: 22319443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signaling domains of mucin Msb2 in Candida albicans.
    Swidergall M; van Wijlick L; Ernst JF
    Eukaryot Cell; 2015 Apr; 14(4):359-70. PubMed ID: 25636320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida albicans mucin Msb2 is a broad-range protectant against antimicrobial peptides.
    Swidergall M; Ernst AM; Ernst JF
    Antimicrob Agents Chemother; 2013 Aug; 57(8):3917-22. PubMed ID: 23733470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Damage to the glycoshield activates PMT-directed O-mannosylation via the Msb2-Cek1 pathway in Candida albicans.
    Cantero PD; Ernst JF
    Mol Microbiol; 2011 May; 80(3):715-25. PubMed ID: 21375589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis.
    Puri S; Kumar R; Chadha S; Tati S; Conti HR; Hube B; Cullen PJ; Edgerton M
    PLoS One; 2012; 7(11):e46020. PubMed ID: 23139737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans.
    Román E; Cottier F; Ernst JF; Pla J
    Eukaryot Cell; 2009 Aug; 8(8):1235-49. PubMed ID: 19542310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candida albicans Cek1 mitogen-activated protein kinase signaling enhances fungicidal activity of salivary histatin 5.
    Li R; Puri S; Tati S; Cullen PJ; Edgerton M
    Antimicrob Agents Chemother; 2015; 59(6):3460-8. PubMed ID: 25824232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signalling mucin Msb2 Regulates adaptation to thermal stress in Candida albicans.
    Saraswat D; Kumar R; Pande T; Edgerton M; Cullen PJ
    Mol Microbiol; 2016 May; 100(3):425-41. PubMed ID: 26749104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch.
    O'Rourke SM; Herskowitz I
    Mol Cell Biol; 2002 Jul; 22(13):4739-49. PubMed ID: 12052881
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Hsu CM; Liao YL; Chang CK; Lan CY
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638975
    [No Abstract]   [Full Text] [Related]  

  • 11. The Cek1‑mediated MAP kinase pathway regulates exposure of α‑1,2 and β‑1,2‑mannosides in the cell wall of Candida albicans modulating immune recognition.
    Román E; Correia I; Salazin A; Fradin C; Jouault T; Poulain D; Liu FT; Pla J
    Virulence; 2016 Jul; 7(5):558-77. PubMed ID: 27191378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions.
    Albrecht A; Felk A; Pichova I; Naglik JR; Schaller M; de Groot P; Maccallum D; Odds FC; Schäfer W; Klis F; Monod M; Hube B
    J Biol Chem; 2006 Jan; 281(2):688-94. PubMed ID: 16269404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candida albicans responds to glycostructure damage by Ace2-mediated feedback regulation of Cek1 signaling.
    van Wijlick L; Swidergall M; Brandt P; Ernst JF
    Mol Microbiol; 2016 Dec; 102(5):827-849. PubMed ID: 27589033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms.
    Tanaka K; Tatebayashi K; Nishimura A; Yamamoto K; Yang HY; Saito H
    Sci Signal; 2014 Feb; 7(314):ra21. PubMed ID: 24570489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10.
    Schild L; Heyken A; de Groot PW; Hiller E; Mock M; de Koster C; Horn U; Rupp S; Hube B
    Eukaryot Cell; 2011 Jan; 10(1):98-109. PubMed ID: 21097664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering improved variants of the antifungal peptide histatin 5 with reduced susceptibility to Candida albicans secreted aspartic proteases and enhanced antimicrobial potency.
    Ikonomova SP; Moghaddam-Taaheri P; Jabra-Rizk MA; Wang Y; Karlsson AJ
    FEBS J; 2018 Jan; 285(1):146-159. PubMed ID: 29143452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans.
    Román E; Nombela C; Pla J
    Mol Cell Biol; 2005 Dec; 25(23):10611-27. PubMed ID: 16287872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAP Kinase Regulation of the
    Rastghalam G; Omran RP; Alizadeh M; Fulton D; Mallick J; Whiteway M
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30787119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histatin 5 initiates osmotic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway.
    Vylkova S; Jang WS; Li W; Nayyar N; Edgerton M
    Eukaryot Cell; 2007 Oct; 6(10):1876-88. PubMed ID: 17715369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The P-113 fragment of histatin 5 requires a specific peptide sequence for intracellular translocation in Candida albicans, which is independent of cell wall binding.
    Jang WS; Li XS; Sun JN; Edgerton M
    Antimicrob Agents Chemother; 2008 Feb; 52(2):497-504. PubMed ID: 17999963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.