These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22319465)

  • 21. The role of prediction and outcomes in adaptive cognitive control.
    Schiffer AM; Waszak F; Yeung N
    J Physiol Paris; 2015; 109(1-3):38-52. PubMed ID: 25698177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural systems for control of voluntary action--a hypothesis.
    Hikosaka O
    Adv Biophys; 1998; 35():81-102. PubMed ID: 9949766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reward-driven changes in striatal pathway competition shape evidence evaluation in decision-making.
    Dunovan K; Vich C; Clapp M; Verstynen T; Rubin J
    PLoS Comput Biol; 2019 May; 15(5):e1006998. PubMed ID: 31060045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of reinforcement learning and decision making in the primate dorsolateral prefrontal cortex.
    Lee D; Seo H
    Ann N Y Acad Sci; 2007 May; 1104():108-22. PubMed ID: 17347332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reward-related choices determine information timing and flow across macaque lateral prefrontal cortex.
    Tang H; Bartolo R; Averbeck BB
    Nat Commun; 2021 Feb; 12(1):894. PubMed ID: 33563989
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Striatal dopamine ramping may indicate flexible reinforcement learning with forgetting in the cortico-basal ganglia circuits.
    Morita K; Kato A
    Front Neural Circuits; 2014; 8():36. PubMed ID: 24782717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered Statistical Learning and Decision-Making in Methamphetamine Dependence: Evidence from a Two-Armed Bandit Task.
    Harlé KM; Zhang S; Schiff M; Mackey S; Paulus MP; Yu AJ
    Front Psychol; 2015; 6():1910. PubMed ID: 26733906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.
    Chadderdon GL; Neymotin SA; Kerr CC; Lytton WW
    PLoS One; 2012; 7(10):e47251. PubMed ID: 23094042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reward prediction in primate basal ganglia and frontal cortex.
    Schultz W; Tremblay L; Hollerman JR
    Neuropharmacology; 1998; 37(4-5):421-9. PubMed ID: 9704983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Food rewards modulate the activity of song neurons in Bengalese finches.
    Seki Y; Hessler NA; Xie K; Okanoya K
    Eur J Neurosci; 2014 Mar; 39(6):975-983. PubMed ID: 24341509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The credit assignment problem in cortico-basal ganglia-thalamic networks: A review, a problem and a possible solution.
    Rubin JE; Vich C; Clapp M; Noneman K; Verstynen T
    Eur J Neurosci; 2021 Apr; 53(7):2234-2253. PubMed ID: 32302439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues.
    Brown J; Bullock D; Grossberg S
    J Neurosci; 1999 Dec; 19(23):10502-11. PubMed ID: 10575046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dopaminergic Control of the Exploration-Exploitation Trade-Off via the Basal Ganglia.
    Humphries MD; Khamassi M; Gurney K
    Front Neurosci; 2012; 6():9. PubMed ID: 22347155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spike-timing dependent plasticity in the striatum.
    Fino E; Venance L
    Front Synaptic Neurosci; 2010; 2():6. PubMed ID: 21423492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple representations of belief states and action values in corticobasal ganglia loops.
    Samejima K; Doya K
    Ann N Y Acad Sci; 2007 May; 1104():213-28. PubMed ID: 17435124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.