These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 22319564)

  • 1. Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS.
    Chen V; Staub RE; Fong S; Tagliaferri M; Cohen I; Shtivelman E
    PLoS One; 2012; 7(2):e30300. PubMed ID: 22319564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and analysis of the active phytochemicals from the anti-cancer botanical extract Bezielle.
    Chen V; Staub RE; Baggett S; Chimmani R; Tagliaferri M; Cohen I; Shtivelman E
    PLoS One; 2012; 7(1):e30107. PubMed ID: 22272282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bezielle (BZL101)-induced oxidative stress damage followed by redistribution of metabolic fluxes in breast cancer cells: a combined proteomic and metabolomic study.
    Klawitter J; Klawitter J; Gurshtein J; Corby K; Fong S; Tagliaferri M; Quattrochi L; Cohen I; Shtivelman E; Christians U
    Int J Cancer; 2011 Dec; 129(12):2945-57. PubMed ID: 21509784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms underlying selective cytotoxic activity of BZL101, an extract of Scutellaria barbata, towards breast cancer cells.
    Fong S; Shoemaker M; Cadaoas J; Lo A; Liao W; Tagliaferri M; Cohen I; Shtivelman E
    Cancer Biol Ther; 2008 Apr; 7(4):577-86. PubMed ID: 18305410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual inhibition of oxidative phosphorylation and glycolysis to enhance cancer therapy.
    Sheng X; Wang MM; Zhang GD; Su Y; Fang HB; Yu ZH; Su Z
    Bioorg Chem; 2024 Jun; 147():107325. PubMed ID: 38583247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligomycin-induced bioenergetic adaptation in cancer cells with heterogeneous bioenergetic organization.
    Hao W; Chang CP; Tsao CC; Xu J
    J Biol Chem; 2010 Apr; 285(17):12647-54. PubMed ID: 20110356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medicinal Chemistry Targeting Mitochondria: From New Vehicles and Pharmacophore Groups to Old Drugs with Mitochondrial Activity.
    Catalán M; Olmedo I; Faúndez J; Jara JA
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33217901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Flomenberg N; Birbe RC; Witkiewicz AK; Howell A; Pavlides S; Tsirigos A; Ertel A; Pestell RG; Broda P; Minetti C; Lisanti MP; Sotgia F
    Cell Cycle; 2011 Dec; 10(23):4047-64. PubMed ID: 22134189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative phosphorylation as a target to arrest malignant neoplasias.
    Rodríguez-Enríquez S; Gallardo-Pérez JC; Marín-Hernández A; Aguilar-Ponce JL; Mandujano-Tinoco EA; Meneses A; Moreno-Sánchez R
    Curr Med Chem; 2011; 18(21):3156-67. PubMed ID: 21671858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial respiration--an important therapeutic target in melanoma.
    Barbi de Moura M; Vincent G; Fayewicz SL; Bateman NW; Hood BL; Sun M; Suhan J; Duensing S; Yin Y; Sander C; Kirkwood JM; Becker D; Conrads TP; Van Houten B; Moschos SJ
    PLoS One; 2012; 7(8):e40690. PubMed ID: 22912665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BA6 Induces Apoptosis via Stimulation of Reactive Oxygen Species and Inhibition of Oxidative Phosphorylation in Human Lung Cancer Cells.
    Cheng MH; Huang HL; Lin YY; Tsui KH; Chen PC; Cheng SY; Chong IW; Sung PJ; Tai MH; Wen ZH; Chen NF; Kuo HM
    Oxid Med Cell Longev; 2019; 2019():6342104. PubMed ID: 31205586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria Targeting as an Effective Strategy for Cancer Therapy.
    Ghosh P; Vidal C; Dey S; Zhang L
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic Analysis Reveals That an Extract of the Plant Lippia origanoides Suppresses Mitochondrial Metabolism in Triple-Negative Breast Cancer Cells.
    Raman V; Aryal UK; Hedrick V; Ferreira RM; Fuentes Lorenzo JL; Stashenko EE; Levy M; Levy MM; Camarillo IG
    J Proteome Res; 2018 Oct; 17(10):3370-3383. PubMed ID: 30185032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bcl-x
    Pfeiffer A; Schneider J; Bueno D; Dolga A; Voss TD; Lewerenz J; Wüllner V; Methner A
    Free Radic Biol Med; 2017 Nov; 112():350-359. PubMed ID: 28807815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geissoschizine methyl ether protects oxidative stress-mediated cytotoxicity in neurons through the 'Neuronal Warburg Effect'.
    Sun J; Ren X; Qi W; Yuan D; Simpkins JW
    J Ethnopharmacol; 2016 Jul; 187():249-58. PubMed ID: 27114061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hydroalcoholic extract from the leaves of Nerium oleander inhibits glycolysis and induces selective killing of lung cancer cells.
    Calderón-Montaño JM; Burgos-Morón E; Orta ML; Mateos S; López-Lázaro M
    Planta Med; 2013 Aug; 79(12):1017-23. PubMed ID: 23824549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promising strategy developed to target drug-resistant cancer cells.
    Thorne J
    Future Med Chem; 2014 Apr; 6(6):603. PubMed ID: 25028759
    [No Abstract]   [Full Text] [Related]  

  • 18. Minerval (2-hydroxyoleic acid) causes cancer cell selective toxicity by uncoupling oxidative phosphorylation and compromising bioenergetic compensation capacity.
    Massalha W; Markovits M; Pichinuk E; Feinstein-Rotkopf Y; Tarshish M; Mishra K; Llado V; Weil M; Escriba PV; Kakhlon O
    Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30602451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism.
    Cheng G; Zielonka J; McAllister D; Hardy M; Ouari O; Joseph J; Dwinell MB; Kalyanaraman B
    Cancer Lett; 2015 Aug; 365(1):96-106. PubMed ID: 26004344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The α-tocopherol derivative ESeroS-GS induces cell death and inhibits cell motility of breast cancer cells through the regulation of energy metabolism.
    Zhao L; Zhao X; Zhao K; Wei P; Fang Y; Zhang F; Zhang B; Ogata K; Mori A; Wei T
    Eur J Pharmacol; 2014 Dec; 745():98-107. PubMed ID: 25446928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.