These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 22319766)
1. Surface characterization of SLActive dental implants. Zinelis S; Silikas N; Thomas A; Syres K; Eliades G Eur J Esthet Dent; 2012; 7(1):72-92. PubMed ID: 22319766 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Roughness, Wettability, and SEM Features between Sandblasted Acid-Etched and Oxidized Titanium Dental Implants. Chhabra K; Rajasekar A J Long Term Eff Med Implants; 2024; 34(4):57-63. PubMed ID: 38842233 [TBL] [Abstract][Full Text] [Related]
3. Surface chemistry effects of topographic modification of titanium dental implant surfaces: 1. Surface analysis. Morra M; Cassinelli C; Bruzzone G; Carpi A; Di Santi G; Giardino R; Fini M Int J Oral Maxillofac Implants; 2003; 18(1):40-5. PubMed ID: 12608667 [TBL] [Abstract][Full Text] [Related]
4. Removal torque and histomorphometric evaluation of bioceramic grit-blasted/acid-etched and dual acid-etched implant surfaces: an experimental study in dogs. Marin C; Granato R; Suzuki M; Gil JN; Piattelli A; Coelho PG J Periodontol; 2008 Oct; 79(10):1942-9. PubMed ID: 18834250 [TBL] [Abstract][Full Text] [Related]
5. Effect of electrochemically deposited nanohydroxyapatite on bone bonding of sandblasted/dual acid-etched titanium implant. He F; Yang G; Wang X; Zhao S Int J Oral Maxillofac Implants; 2009; 24(5):790-9. PubMed ID: 19865618 [TBL] [Abstract][Full Text] [Related]
6. The relative effect of surface strontium chemistry and super-hydrophilicity on the early osseointegration of moderately rough titanium surface in the rabbit femur. Park JW; Kwon TG; Suh JY Clin Oral Implants Res; 2013 Jun; 24(6):706-9. PubMed ID: 22409778 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Gahlert M; Gudehus T; Eichhorn S; Steinhauser E; Kniha H; Erhardt W Clin Oral Implants Res; 2007 Oct; 18(5):662-8. PubMed ID: 17608736 [TBL] [Abstract][Full Text] [Related]
8. Rehabilitation of irradiated patients with modified and conventional sandblasted acid-etched implants: preliminary results of a split-mouth study. Heberer S; Kilic S; Hossamo J; Raguse JD; Nelson K Clin Oral Implants Res; 2011 May; 22(5):546-51. PubMed ID: 21121960 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical evaluation of laser-etched Ti implant surfaces vs. chemically modified SLA Ti implant surfaces: Removal torque and resonance frequency analysis in rabbit tibias. Lee JT; Cho SA J Mech Behav Biomed Mater; 2016 Aug; 61():299-307. PubMed ID: 27093590 [TBL] [Abstract][Full Text] [Related]
10. Micro-topography and reactivity of implant surfaces: an in vitro study in simulated body fluid (SBF). Gandolfi MG; Taddei P; Siboni F; Perrotti V; Iezzi G; Piattelli A; Prati C Microsc Microanal; 2015 Feb; 21(1):190-203. PubMed ID: 25667970 [TBL] [Abstract][Full Text] [Related]
12. The role of surface implant treatments on the biological behavior of SaOS-2 osteoblast-like cells. An in vitro comparative study. Conserva E; Menini M; Ravera G; Pera P Clin Oral Implants Res; 2013 Aug; 24(8):880-9. PubMed ID: 22251013 [TBL] [Abstract][Full Text] [Related]
14. Monitoring bone morphogenetic protein-2 and -7, soluble receptor activator of nuclear factor-κB ligand and osteoprotegerin levels in the peri-implant sulcular fluid during the osseointegration of hydrophilic-modified sandblasted acid-etched and sandblasted acid-etched surface dental implants. Dolanmaz D; Saglam M; Inan O; Dundar N; Alniacık G; Gursoy Trak B; Kocak E; Hakki SS J Periodontal Res; 2015 Feb; 50(1):62-73. PubMed ID: 24697526 [TBL] [Abstract][Full Text] [Related]
15. In Vitro Bioactivity Test of Real Dental Implants According to ISO 23317. Kolafová M; Šťovíček J; Strnad J; Zemek J; Dybal J Int J Oral Maxillofac Implants; 2017; 32(6):1221-1230. PubMed ID: 29140368 [TBL] [Abstract][Full Text] [Related]
16. The Effect of Microcosm Biofilm Decontamination on Surface Topography, Chemistry, and Biocompatibility Dynamics of Implant Titanium Surfaces. Sousa V; Mardas N; Spratt D; Hassan IA; Walters NJ; Beltrán V; Donos N Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077428 [TBL] [Abstract][Full Text] [Related]
17. Influence of a machined collar on crestal bone changes around titanium implants: a histometric study in the canine mandible. Hermann JS; Jones AA; Bakaeen LG; Buser D; Schoolfield JD; Cochran DL J Periodontol; 2011 Sep; 82(9):1329-38. PubMed ID: 21486176 [TBL] [Abstract][Full Text] [Related]
18. Fractal analysis: a novel method to assess roughness organization of implant surface topography. Perrotti V; Aprile G; Degidi M; Piattelli A; Iezzi G Int J Periodontics Restorative Dent; 2011; 31(6):633-9. PubMed ID: 22140665 [TBL] [Abstract][Full Text] [Related]
19. The influence of surface roughness on the displacement of osteogenic bone particles during placement of titanium screw-type implants. Tabassum A; Walboomers F; Wolke JG; Meijer GJ; Jansen JA Clin Implant Dent Relat Res; 2011 Dec; 13(4):269-78. PubMed ID: 19673924 [TBL] [Abstract][Full Text] [Related]
20. Initial attachment, subsequent cell proliferation/viability and gene expression of epithelial cells related to attachment and wound healing in response to different titanium surfaces. An N; Rausch-fan X; Wieland M; Matejka M; Andrukhov O; Schedle A Dent Mater; 2012 Dec; 28(12):1207-14. PubMed ID: 23083807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]