These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 22320057)

  • 41. Effects of cadence on energy generation and absorption at lower extremity joints during gait.
    Teixeira-Salmela LF; Nadeau S; Milot MH; Gravel D; Requião LF
    Clin Biomech (Bristol); 2008 Jul; 23(6):769-78. PubMed ID: 18384921
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling initial contact dynamics during ambulation with dynamic simulation.
    Meyer AR; Wang M; Smith PA; Harris GF
    Med Biol Eng Comput; 2007 Apr; 45(4):387-94. PubMed ID: 17268804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improvements in skilled walking associated with kinematic adaptations in people with spinal cord injury.
    Malik RN; Eginyan G; Lynn AK; Lam T
    J Neuroeng Rehabil; 2019 Aug; 16(1):107. PubMed ID: 31455357
    [TBL] [Abstract][Full Text] [Related]  

  • 44. BiosStep-assisted walking in spinal cord-injured patients: an evaluation report.
    Tabernig CB; Cherniz AS; Escobar SO
    Int J Rehabil Res; 2007 Sep; 30(3):249-53. PubMed ID: 17762773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Araz medial linkage orthosis: a new orthosis for walking in patients with spinal cord injury: a single patient study.
    Arazpour M; Bani MA; Hutchins SW; Sayyadfar M
    Prosthet Orthot Int; 2014 Apr; 38(2):155-9. PubMed ID: 23798043
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of the performance of paraplegic subjects during walking with a new design of reciprocal gait orthosis.
    Karimi MT; Fatoye F
    Disabil Rehabil Assist Technol; 2016; 11(1):72-9. PubMed ID: 25069902
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomechanical effects of body weight support with a novel robotic walker for over-ground gait rehabilitation.
    Mun KR; Lim SB; Guo Z; Yu H
    Med Biol Eng Comput; 2017 Feb; 55(2):315-326. PubMed ID: 27193227
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A wearable robotic orthosis with a spring-assist actuator.
    Seungmin Jung ; Chankyu Kim ; Jisu Park ; Dongyoub Yu ; Jaehwan Park ; Junho Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5051-5054. PubMed ID: 28269403
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Training for mobility with exoskeleton robot in spinal cord injury patients: a pilot study.
    Sale P; Russo EF; Scarton A; Calabrò RS; Masiero S; Filoni S
    Eur J Phys Rehabil Med; 2018 Oct; 54(5):745-751. PubMed ID: 29517187
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Variability of Leg Kinematics during Overground Walking in Persons with Chronic Incomplete Spinal Cord Injury.
    Sohn WJ; Tan AQ; Hayes HB; Pochiraju S; Deffeyes J; Trumbower RD
    J Neurotrauma; 2018 Nov; 35(21):2519-2529. PubMed ID: 29648987
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The physiological cost index of walking with mechanical and powered gait orthosis in patients with spinal cord injury.
    Arazpour M; Bani MA; Hutchins SW; Jones RK
    Spinal Cord; 2013 May; 51(5):356-9. PubMed ID: 23247013
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simulation of human walking with powered orthosis for designing practical assistive device.
    Uchiyama Y; Nagai C; Obinata G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4816-9. PubMed ID: 23367005
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Walking ability of spinal cord injury individuals: How to improve it?
    Sadeghi M; Ghasemi GA; Karimi MT
    Technol Health Care; 2017; 25(3):591-597. PubMed ID: 28106574
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments.
    Harper NG; Esposito ER; Wilken JM; Neptune RR
    Clin Biomech (Bristol); 2014 Sep; 29(8):877-84. PubMed ID: 25193884
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design and analysis of an original powered foot clearance creator mechanism for walking in patients with spinal cord injury.
    Maleki M; Badri S; Shayestehepour H; Arazpour M; Farahmand F; Mousavi ME; Abdolahi E; Farkhondeh H; Head JS; Golchin N; Mardani MA
    Disabil Rehabil Assist Technol; 2019 May; 14(4):333-337. PubMed ID: 29529903
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of passive elastic joint moments in the lower extremities.
    Riener R; Edrich T
    J Biomech; 1999 May; 32(5):539-44. PubMed ID: 10327008
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative kinematics of two walking frame gaits.
    Crosbie J
    J Orthop Sports Phys Ther; 1994 Oct; 20(4):186-92. PubMed ID: 7987378
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.
    Arazpour M; Moradi A; Samadian M; Bahramizadeh M; Joghtaei M; Ahmadi Bani M; Hutchins SW; Mardani MA
    Prosthet Orthot Int; 2016 Jun; 40(3):377-83. PubMed ID: 26184037
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A wearable resistive robot facilitates locomotor adaptations during gait.
    Washabaugh EP; Krishnan C
    Restor Neurol Neurosci; 2018; 36(2):215-223. PubMed ID: 29526856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.