These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22320201)

  • 1. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.
    Pavlov AR; Pavlova NV; Kozyavkin SA; Slesarev AI
    Biochemistry; 2012 Mar; 51(10):2032-43. PubMed ID: 22320201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helix-hairpin-helix motifs confer salt resistance and processivity on chimeric DNA polymerases.
    Pavlov AR; Belova GI; Kozyavkin SA; Slesarev AI
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13510-5. PubMed ID: 12368475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs.
    de Vega M; Lázaro JM; Mencía M; Blanco L; Salas M
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16506-11. PubMed ID: 20823261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase.
    Villbrandt B; Sobek H; Frey B; Schomburg D
    Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermostable DNA polymerases can perform translesion synthesis using 8-oxoguanine and tetrahydrofuran-containing DNA templates.
    Belousova EA; Rechkunova NI; Lavrik OI
    Biochim Biophys Acta; 2006 Jan; 1764(1):97-104. PubMed ID: 16338185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.
    Schönbrunner NJ; Fiss EH; Budker O; Stoffel S; Sigua CL; Gelfand DH; Myers TW
    Biochemistry; 2006 Oct; 45(42):12786-95. PubMed ID: 17042497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro replication slippage by DNA polymerases from thermophilic organisms.
    Viguera E; Canceill D; Ehrlich SD
    J Mol Biol; 2001 Sep; 312(2):323-33. PubMed ID: 11554789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain.
    Zhou BL; Pata JD; Steitz TA
    Mol Cell; 2001 Aug; 8(2):427-37. PubMed ID: 11545744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro.
    Wang Y; Prosen DE; Mei L; Sullivan JC; Finney M; Vander Horn PB
    Nucleic Acids Res; 2004; 32(3):1197-207. PubMed ID: 14973201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA synthesis from diphosphate substrates by DNA polymerases.
    Burke CR; Lupták A
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):980-985. PubMed ID: 29339523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study of the force dependence of phosphoryl transfer during DNA synthesis by a high fidelity polymerase.
    Venkatramani R; Radhakrishnan R
    Phys Rev Lett; 2008 Feb; 100(8):088102. PubMed ID: 18352668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 A resolution.
    Kiefer JR; Mao C; Hansen CJ; Basehore SL; Hogrefe HH; Braman JC; Beese LS
    Structure; 1997 Jan; 5(1):95-108. PubMed ID: 9016716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes.
    Genna V; Colombo M; De Vivo M; Marcia M
    Structure; 2018 Jan; 26(1):40-50.e2. PubMed ID: 29225080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional hydrogen-bonding map of the minor groove binding tracks of six DNA polymerases.
    Morales JC; Kool ET
    Biochemistry; 2000 Oct; 39(42):12979-88. PubMed ID: 11041863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA binding strength increases the processivity and activity of a Y-Family DNA polymerase.
    Wu J; de Paz A; Zamft BM; Marblestone AH; Boyden ES; Kording KP; Tyo KEJ
    Sci Rep; 2017 Jul; 7(1):4756. PubMed ID: 28684739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capacity of nine thermostable DNA polymerases To mediate DNA amplification in the presence of PCR-inhibiting samples.
    Abu Al-Soud W; Râdström P
    Appl Environ Microbiol; 1998 Oct; 64(10):3748-53. PubMed ID: 9758794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposite roles of domains 2+3 of Escherichia coli EF-Tu and Bacillus stearothermophilus EF-Tu in the regulation of EF-Tu GTPase activity.
    Sanderová H; Jonák J
    Biochim Biophys Acta; 2005 Aug; 1752(1):11-7. PubMed ID: 16081328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermostable Bst DNA polymerase I lacks a 3'-->5' proofreading exonuclease activity.
    Aliotta JM; Pelletier JJ; Ware JL; Moran LS; Benner JS; Kong H
    Genet Anal; 1996 Mar; 12(5-6):185-95. PubMed ID: 8740835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.