These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 22320360)

  • 21. Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration.
    Giannoni P; Scaglione S; Daga A; Ilengo C; Cilli M; Quarto R
    Tissue Eng Part A; 2010 Feb; 16(2):489-99. PubMed ID: 19712045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Osteogenic effect of peptides anchored aminated tissue engineered bone for repairing femoral defect in rats].
    Xu Z; Chen J; Xu W; Zhu X; Wang C; Luo H; Li G; Chen R
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):520-8. PubMed ID: 23879086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.
    Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL
    Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combination of beta-TCP and BMP-2 gene-modified bMSCs to heal critical size mandibular defects in rats.
    Zhao J; Hu J; Wang S; Sun X; Xia L; Zhang X; Zhang Z; Jiang X
    Oral Dis; 2010 Jan; 16(1):46-54. PubMed ID: 19619194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: an in vitro study.
    Xue Y; Dånmark S; Xing Z; Arvidson K; Albertsson AC; Hellem S; Finne-Wistrand A; Mustafa K
    J Biomed Mater Res A; 2010 Dec; 95(4):1244-51. PubMed ID: 20939051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The scale-up of a tissue engineered porous hydroxyapatite polymer composite scaffold for use in bone repair: an ovine femoral condyle defect study.
    Tayton E; Purcell M; Smith JO; Lanham S; Howdle SM; Shakesheff KM; Goodship A; Blunn G; Fowler D; Dunlop DG; Oreffo RO
    J Biomed Mater Res A; 2015 Apr; 103(4):1346-56. PubMed ID: 25044983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow.
    Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA
    Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells.
    Xuan Y; Tang H; Wu B; Ding X; Lu Z; Li W; Xu Z
    J Biomed Mater Res A; 2014 Oct; 102(10):3401-8. PubMed ID: 24142768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically.
    Jeon O; Rhie JW; Kwon IK; Kim JH; Kim BS; Lee SH
    Tissue Eng Part A; 2008 Aug; 14(8):1285-94. PubMed ID: 18593269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of hybrid porous biomimetic nano-hydroxyapatite/polyamide 6 and bone marrow-derived stem cell construct in repair of calvarial critical size defect.
    Khadka A; Li J; Li Y; Gao Y; Zuo Y; Ma Y
    J Craniofac Surg; 2011 Sep; 22(5):1852-8. PubMed ID: 21959450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transfect bone marrow stromal cells with pcDNA3.1-VEGF to construct tissue engineered bone in defect repair.
    Si HP; Lu ZH; Lin YL; Li JJ; Yin QF; Zhao DM; Wang SJ; Li JM; Wang HB; Zhang XH
    Chin Med J (Engl); 2012 Mar; 125(5):906-11. PubMed ID: 22490595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs.
    Jiang X; Zhao J; Wang S; Sun X; Zhang X; Chen J; Kaplan DL; Zhang Z
    Biomaterials; 2009 Sep; 30(27):4522-32. PubMed ID: 19501905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds.
    Kim K; Dean D; Lu A; Mikos AG; Fisher JP
    Acta Biomater; 2011 Mar; 7(3):1249-64. PubMed ID: 21074640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The osteogenic properties of CaP/silk composite scaffolds.
    Zhang Y; Wu C; Friis T; Xiao Y
    Biomaterials; 2010 Apr; 31(10):2848-56. PubMed ID: 20071025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects.
    Qu D; Li J; Li Y; Gao Y; Zuo Y; Hsu Y; Hu J
    J Biomed Mater Res A; 2011 Mar; 96(3):543-51. PubMed ID: 21254386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop.
    Liu H; Xu GW; Wang YF; Zhao HS; Xiong S; Wu Y; Heng BC; An CR; Zhu GH; Xie DH
    Biomaterials; 2015 May; 49():103-12. PubMed ID: 25725559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term stable canine mandibular augmentation using autologous bone marrow stromal cells and hydroxyapatite/tricalcium phosphate.
    Kuznetsov SA; Huang KE; Marshall GW; Robey PG; Mankani MH
    Biomaterials; 2008 Nov; 29(31):4211-6. PubMed ID: 18687465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.