BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22320435)

  • 1. A microwell cell culture platform for the aggregation of pancreatic β-cells.
    Bernard AB; Lin CC; Anseth KS
    Tissue Eng Part C Methods; 2012 Aug; 18(8):583-92. PubMed ID: 22320435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.
    Amer LD; Holtzinger A; Keller G; Mahoney MJ; Bryant SJ
    Acta Biomater; 2015 Aug; 22():103-10. PubMed ID: 25913222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of microwell structures and direct oxygenation enables efficient and size-regulated aggregate formation of an insulin-secreting pancreatic β-cell line.
    Shinohara M; Kimura H; Montagne K; Komori K; Fujii T; Sakai Y
    Biotechnol Prog; 2014; 30(1):178-87. PubMed ID: 24265060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking hypoxic signaling within encapsulated cell aggregates.
    Skiles ML; Sahai S; Blanchette JO
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22215075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial and beta cell composite aggregates for improved function of a bioartificial pancreas encapsulation device.
    Skrzypek K; Barrera YB; Groth T; Stamatialis D
    Int J Artif Organs; 2018 Mar; 41(3):152-159. PubMed ID: 29546813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function.
    Lin CC; Anseth KS
    Proc Natl Acad Sci U S A; 2011 Apr; 108(16):6380-5. PubMed ID: 21464290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids.
    Lin CC; Raza A; Shih H
    Biomaterials; 2011 Dec; 32(36):9685-95. PubMed ID: 21924490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments.
    Weber LM; He J; Bradley B; Haskins K; Anseth KS
    Acta Biomater; 2006 Jan; 2(1):1-8. PubMed ID: 16701853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-matrix interactions improve beta-cell survival and insulin secretion in three-dimensional culture.
    Weber LM; Hayda KN; Anseth KS
    Tissue Eng Part A; 2008 Dec; 14(12):1959-68. PubMed ID: 18724831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entrapped collagen type 1 promotes differentiation of embryonic pancreatic precursor cells into glucose-responsive beta-cells when cultured in three-dimensional PEG hydrogels.
    Mason MN; Arnold CA; Mahoney MJ
    Tissue Eng Part A; 2009 Dec; 15(12):3799-808. PubMed ID: 19537960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of gamma-secretase activity promotes differentiation of embryonic pancreatic precursor cells into functional islet-like clusters in poly(ethylene glycol) hydrogel culture.
    Mason MN; Mahoney MJ
    Tissue Eng Part A; 2010 Aug; 16(8):2593-603. PubMed ID: 20236034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation.
    Su J; Hu BH; Lowe WL; Kaufman DB; Messersmith PB
    Biomaterials; 2010 Jan; 31(2):308-14. PubMed ID: 19782393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrix-derived adhesive peptides.
    Weber LM; Hayda KN; Haskins K; Anseth KS
    Biomaterials; 2007 Jul; 28(19):3004-11. PubMed ID: 17391752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucagon-like peptide-1 functionalized PEG hydrogels promote survival and function of encapsulated pancreatic beta-cells.
    Lin CC; Anseth KS
    Biomacromolecules; 2009 Sep; 10(9):2460-7. PubMed ID: 19586041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoresponsive poly(N-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval.
    Kim G; Jung Y; Cho K; Lee HJ; Koh WG
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111128. PubMed ID: 32600725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective beta-cell differentiation of dissociated embryonic pancreatic precursor cells cultured in synthetic polyethylene glycol hydrogels.
    Mason MN; Mahoney MJ
    Tissue Eng Part A; 2009 Jun; 15(6):1343-52. PubMed ID: 19072086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid fabrication of functionalised poly(dimethylsiloxane) microwells for cell aggregate formation.
    Forget A; Burzava ALS; Delalat B; Vasilev K; Harding FJ; Blencowe A; Voelcker NH
    Biomater Sci; 2017 Mar; 5(4):828-836. PubMed ID: 28276540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and recovery of β-cell spheroids from step-growth PEG-peptide hydrogels.
    Raza A; Lin CC
    J Vis Exp; 2012 Dec; (70):e50081. PubMed ID: 23241531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers.
    Jamal M; Kadam SS; Xiao R; Jivan F; Onn TM; Fernandes R; Nguyen TD; Gracias DH
    Adv Healthc Mater; 2013 Aug; 2(8):1142-50. PubMed ID: 23386382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric effect of the hydrogel grid structure on in vitro formation of homogeneous MIN6 cell clusters.
    Bae CY; Min MK; Kim H; Park JK
    Lab Chip; 2014 Jul; 14(13):2183-90. PubMed ID: 24609000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.