BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 22320784)

  • 1. Comprehensive validation of computational fluid dynamics simulations of in-vivo blood flow in patient-specific cerebral aneurysms.
    Sun Q; Groth A; Aach T
    Med Phys; 2012 Feb; 39(2):742-54. PubMed ID: 22320784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms.
    Sun Q; Groth A; Bertram M; Waechter I; Bruijns T; Hermans R; Aach T
    Med Phys; 2010 Sep; 37(9):5054-65. PubMed ID: 20964225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements.
    Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D
    J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions.
    Marzo A; Singh P; Larrabide I; Radaelli A; Coley S; Gwilliam M; Wilkinson ID; Lawford P; Reymond P; Patel U; Frangi A; Hose DR
    Ann Biomed Eng; 2011 Feb; 39(2):884-96. PubMed ID: 20972626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms.
    Berg P; Roloff C; Beuing O; Voss S; Sugiyama S; Aristokleous N; Anayiotos AS; Ashton N; Revell A; Bressloff NW; Brown AG; Chung BJ; Cebral JR; Copelli G; Fu W; Qiao A; Geers AJ; Hodis S; Dragomir-Daescu D; Nordahl E; Bora Suzen Y; Owais Khan M; Valen-Sendstad K; Kono K; Menon PG; Albal PG; Mierka O; Münster R; Morales HG; Bonnefous O; Osman J; Goubergrits L; Pallares J; Cito S; Passalacqua A; Piskin S; Pekkan K; Ramalho S; Marques N; Sanchi S; Schumacher KR; Sturgeon J; Švihlová H; Hron J; Usera G; Mendina M; Xiang J; Meng H; Steinman DA; Janiga G
    J Biomech Eng; 2015 Dec; 137(12):121008. PubMed ID: 26473395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of velocity patterns in an AComA aneurysm measured with 2D phase contrast MRI and simulated with CFD.
    Karmonik C; Klucznik R; Benndorf G
    Technol Health Care; 2008; 16(2):119-28. PubMed ID: 18487858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging.
    Berg P; Stucht D; Janiga G; Beuing O; Speck O; Thévenin D
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24292415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations.
    Hoi Y; Woodward SH; Kim M; Taulbee DB; Meng H
    J Biomech Eng; 2006 Dec; 128(6):844-51. PubMed ID: 17154684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics.
    Hollnagel DI; Summers PE; Poulikakos D; Kollias SS
    NMR Biomed; 2009 Oct; 22(8):795-808. PubMed ID: 19412933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics.
    Ford MD; Stuhne GR; Nikolov HN; Habets DF; Lownie SP; Holdsworth DW; Steinman DA
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1586-92. PubMed ID: 16350918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the influence of inlet boundary conditions on computational fluid dynamics for intracranial aneurysms: a virtual experiment.
    Pereira VM; Brina O; Marcos Gonzales A; Narata AP; Bijlenga P; Schaller K; Lovblad KO; Ouared R
    J Biomech; 2013 May; 46(9):1531-9. PubMed ID: 23602597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics--preliminary experience.
    Karmonik C; Klucznik R; Benndorf G
    Rofo; 2008 Mar; 180(3):209-15. PubMed ID: 18278729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Fluid Dynamics modeling of contrast transport in basilar aneurysms following flow-altering surgeries.
    Vali A; Abla AA; Lawton MT; Saloner D; Rayz VL
    J Biomech; 2017 Jan; 50():195-201. PubMed ID: 27890537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis.
    Shi C; Kojima M; Anzai H; Tercero C; Ikeda S; Ohta M; Fukuda T; Arai F; Najdovski Z; Negoro M; Irie K
    Int J Med Robot; 2013 Jun; 9(2):213-22. PubMed ID: 23483681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images.
    Castro MA; Putman CM; Cebral JR
    Acad Radiol; 2006 Jul; 13(7):811-21. PubMed ID: 16777554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Side Branches on the Computation of Fractional Flow in Intracranial Arterial Stenosis Using the Computational Fluid Dynamics Method.
    Liu H; Lan L; Leng X; Ip HL; Leung TWH; Wang D; Wong KS
    J Stroke Cerebrovasc Dis; 2018 Jan; 27(1):44-52. PubMed ID: 29107636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient-individualized boundary conditions for CFD simulations using time-resolved 3D angiography.
    Boegel M; Gehrisch S; Redel T; Rohkohl C; Hoelter P; Doerfler A; Maier A; Kowarschik M
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1061-9. PubMed ID: 27017497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.