BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1531 related articles for article (PubMed ID: 22320795)

  • 1. Three-dimensional lung tumor segmentation from x-ray computed tomography using sparse field active models.
    Awad J; Owrangi A; Villemaire L; O'Riordan E; Parraga G; Fenster A
    Med Phys; 2012 Feb; 39(2):851-65. PubMed ID: 22320795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional ultrasound of carotid atherosclerosis: semiautomated segmentation using a level set-based method.
    Ukwatta E; Awad J; Ward AD; Buchanan D; Samarabandu J; Parraga G; Fenster A
    Med Phys; 2011 May; 38(5):2479-93. PubMed ID: 21776783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometrical model-based segmentation of the organs of sight on CT images.
    Bekes G; Máté E; Nyúl LG; Kuba A; Fidrich M
    Med Phys; 2008 Feb; 35(2):735-43. PubMed ID: 18383695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doubling time calculations for lung cancer by three-dimensional computer-aided volumetry: effects of inter-observer differences and nodule characteristics.
    Koike W; Iwano S; Matsuo K; Kitano M; Kawakami K; Naganawa S
    J Med Imaging Radiat Oncol; 2014 Feb; 58(1):82-8. PubMed ID: 24304703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated threshold-based 3D segmentation versus short-axis planimetry for assessment of global left ventricular function with dual-source MDCT.
    Juergens KU; Seifarth H; Range F; Wienbeck S; Wenker M; Heindel W; Fischbach R
    AJR Am J Roentgenol; 2008 Feb; 190(2):308-14. PubMed ID: 18212214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 4D statistical shape model for automated segmentation of lungs with large tumors.
    Wilms M; Ehrhardt J; Handels H
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):347-54. PubMed ID: 23286067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the tibiofemoral joint space using x-ray tomosynthesis.
    Kalinosky B; Sabol JM; Piacsek K; Heckel B; Gilat Schmidt T
    Med Phys; 2011 Dec; 38(12):6672-82. PubMed ID: 22149849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of juxta-pleural tumors from CT images based on morphological feature analysis.
    Yong JR; Qi S; van Triest HJ; Kang Y; Qian W
    Biomed Mater Eng; 2014; 24(6):3137-44. PubMed ID: 25227023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT.
    Chen T; Kim S; Goyal S; Jabbour S; Zhou J; Rajagopal G; Haffty B; Yue N
    Med Phys; 2010 Jan; 37(1):197-210. PubMed ID: 20175482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On simulating subjective evaluation using combined objective metrics for validation of 3D tumor segmentation.
    Deng X; Zhu L; Sun Y; Xu C; Song L; Chen J; Merges RD; Jolly MP; Suehling M; Xu X
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):977-84. PubMed ID: 18051153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation.
    Linguraru MG; Sandberg JK; Li Z; Shah F; Summers RM
    Med Phys; 2010 Feb; 37(2):771-83. PubMed ID: 20229887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volumetric response classification in metastatic solid tumors on MSCT: initial results in a whole-body setting.
    Wulff AM; Fabel M; Freitag-Wolf S; Tepper M; Knabe HM; Schäfer JP; Jansen O; Bolte H
    Eur J Radiol; 2013 Oct; 82(10):e567-73. PubMed ID: 23827800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field.
    Tan Y; Schwartz LH; Zhao B
    Med Phys; 2013 Apr; 40(4):043502. PubMed ID: 23556926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulmonary tumor measurements from x-ray computed tomography in one, two, and three dimensions.
    Villemaire L; Owrangi AM; Etemad-Rezai R; Wilson L; O'Riordan E; Keller H; Driscoll B; Bauman G; Fenster A; Parraga G
    Acad Radiol; 2011 Nov; 18(11):1391-402. PubMed ID: 21917485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulmonary nodules: Preliminary experience with semiautomated volumetric evaluation by CT stratum.
    Sone S; Tsushima K; Yoshida K; Hamanaka K; Hanaoka T; Kondo R
    Acad Radiol; 2010 Jul; 17(7):900-11. PubMed ID: 20447841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-automatic volumetric measurement of lung cancer using multi-detector CT effects of nodule characteristics.
    Iwano S; Okada T; Koike W; Matsuo K; Toya R; Yamazaki M; Ito S; Ito J; Naganwa S
    Acad Radiol; 2009 Oct; 16(10):1179-86. PubMed ID: 19524456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the thoracic aorta using a semi-automated post processing tool.
    Entezari P; Kino A; Honarmand AR; Galizia MS; Yang Y; Collins J; Yaghmai V; Carr JC
    Eur J Radiol; 2013 Sep; 82(9):1558-64. PubMed ID: 23680155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel lung nodules detection scheme based on vessel segmentation on CT images.
    Jia T; Zhang H; Meng H
    Biomed Mater Eng; 2014; 24(6):3179-86. PubMed ID: 25227026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atlas-driven lung lobe segmentation in volumetric X-ray CT images.
    Zhang L; Hoffman EA; Reinhardt JM
    IEEE Trans Med Imaging; 2006 Jan; 25(1):1-16. PubMed ID: 16398410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology.
    Petrou M; Quint LE; Nan B; Baker LH
    AJR Am J Roentgenol; 2007 Feb; 188(2):306-12. PubMed ID: 17242235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 77.