BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

665 related articles for article (PubMed ID: 22320797)

  • 1. Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field.
    Oborn BM; Metcalfe PE; Butson MJ; Rosenfeld AB; Keall PJ
    Med Phys; 2012 Feb; 39(2):874-90. PubMed ID: 22320797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron contamination modeling and reduction in a 1 T open bore inline MRI-linac system.
    Oborn BM; Kolling S; Metcalfe PE; Crozier S; Litzenberg DW; Keall PJ
    Med Phys; 2014 May; 41(5):051708. PubMed ID: 24784374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution entry and exit Monte Carlo dose calculations from a linear accelerator 6 MV beam under the influence of transverse magnetic fields.
    Oborn BM; Metcalfe PE; Butson MJ; Rosenfeld AB
    Med Phys; 2009 Aug; 36(8):3549-59. PubMed ID: 19746789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of longitudinal magnetic fields on a simulated in-line 6 MV linac.
    St Aubin J; Santos DM; Steciw S; Fallone BG
    Med Phys; 2010 Sep; 37(9):4916-23. PubMed ID: 20964210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models.
    Keyvanloo A; Burke B; Warkentin B; Tadic T; Rathee S; Kirkby C; Santos DM; Fallone BG
    Med Phys; 2012 Oct; 39(10):6509-21. PubMed ID: 23039685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo characterization of skin doses in 6 MV transverse field MRI-linac systems: effect of field size, surface orientation, magnetic field strength, and exit bolus.
    Oborn BM; Metcalfe PE; Butson MJ; Rosenfeld AB
    Med Phys; 2010 Oct; 37(10):5208-17. PubMed ID: 21089754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic shielding investigation for a 6 MV in-line linac within the parallel configuration of a linac-MR system.
    Santos DM; St Aubin J; Fallone BG; Steciw S
    Med Phys; 2012 Feb; 39(2):788-97. PubMed ID: 22320788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT4.
    Ahmad SB; Sarfehnia A; Paudel MR; Kim A; Hissoiny S; Sahgal A; Keller B
    Med Phys; 2016 Feb; 43(2):894-907. PubMed ID: 26843250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal skin dose increase in longitudinal rotating biplanar linac-MR systems: examination of radiation energy and flattening filter design.
    Keyvanloo A; Burke B; St Aubin J; Baillie D; Wachowicz K; Warkentin B; Steciw S; Fallone BG
    Phys Med Biol; 2016 May; 61(9):3527-39. PubMed ID: 27050044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI-LINAC systems.
    Gargett M; Oborn B; Metcalfe P; Rosenfeld A
    Med Phys; 2015 Feb; 42(2):856-65. PubMed ID: 25652498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backscatter dose effects for high atomic number materials being irradiated in the presence of a magnetic field: A Monte Carlo study for the MRI linac.
    Ahmad SB; Sarfehnia A; Kim A; Wronski M; Sahgal A; Keller BM
    Med Phys; 2016 Aug; 43(8):4665. PubMed ID: 27487883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beam perturbation characteristics of a 2D transmission silicon diode array, Magic Plate.
    Alrowaili ZA; Lerch ML; Petasecca M; Carolan MG; Metcalfe PE; Rosenfeld AB
    J Appl Clin Med Phys; 2016 Mar; 17(2):85-98. PubMed ID: 27074475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of standard RF coil materials on surface and buildup dose from a 6 MV photon beam in magnetic field.
    Ghila A; Fallone BG; Rathee S
    Med Phys; 2016 Nov; 43(11):5808. PubMed ID: 27806597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental characterization of magnetically focused electron contamination at the surface of a high-field inline MRI-linac.
    Roberts NF; Patterson E; Jelen U; Causer T; Holloway L; Liney G; Lerch M; Rosenfeld AB; Cutajar D; Oborn BM; Metcalfe P
    Med Phys; 2019 Dec; 46(12):5780-5789. PubMed ID: 31633212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SU-E-T-20: Removal of Electron Contamination in Longitudinal Field MRI-Linac Systems: A Monte Carlo Study.
    Oborn BM; Metcalfe P; Butson M; Crozier S; Keall P
    Med Phys; 2012 Jun; 39(6Part9):3706. PubMed ID: 28519017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WE-E-BRB-06: Monte Carlo Calculations of the Skin Dose for Longitudinal Linac-MR System Using Realistic Three-Dimensional Magnetic Field Modeling.
    Keyvanloo A; Burke B; Tadic T; Warkentin B; Kirkby C; Rathee S; Fallone B
    Med Phys; 2012 Jun; 39(6Part27):3957. PubMed ID: 28519968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental verification of EGSnrc Monte Carlo calculated depth doses within a realistic parallel magnetic field in a polystyrene phantom.
    Ghila A; Steciw S; Fallone BG; Rathee S
    Med Phys; 2017 Sep; 44(9):4804-4815. PubMed ID: 28626920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel electron accelerator for MRI-Linac radiotherapy.
    Whelan B; Gierman S; Holloway L; Schmerge J; Keall P; Fahrig R
    Med Phys; 2016 Mar; 43(3):1285-94. PubMed ID: 26936713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the truebeam linac using a CAD to Geant4 geometry implementation: dose and IAEA-compliant phase space calculations.
    Constantin M; Perl J; LoSasso T; Salop A; Whittum D; Narula A; Svatos M; Keall PJ
    Med Phys; 2011 Jul; 38(7):4018-24. PubMed ID: 21858999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative dosimetry with an MR-linac: Response of ion chambers, diamond, and diode detectors for off-axis, depth dose, and output factor measurements.
    O'Brien DJ; Dolan J; Pencea S; Schupp N; Sawakuchi GO
    Med Phys; 2018 Feb; 45(2):884-897. PubMed ID: 29178457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.