These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 22320883)

  • 1. Field study of subsurface heterogeneity with steady-state hydraulic tomography.
    Berg SJ; Illman WA
    Ground Water; 2013; 51(1):29-40. PubMed ID: 22320883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical issues in imaging hydraulic conductivity through hydraulic tomography.
    Illman WA; Craig AJ; Liu X
    Ground Water; 2008; 46(1):120-32. PubMed ID: 18181871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of approaches for predicting solute transport: sandbox experiments.
    Illman WA; Berg SJ; Yeh TC
    Ground Water; 2012; 50(3):421-31. PubMed ID: 21883194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of steady-state hydraulic tomography to inform the selection of a chaotic advection system.
    Cho MS; Zhao Z; Thomson NR; Illman WA
    J Contam Hydrol; 2020 Feb; 229():103559. PubMed ID: 31784037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site.
    Berg SJ; Illman WA
    Ground Water; 2015; 53(1):71-89. PubMed ID: 24428358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydraulic/partitioning tracer tomography for DNAPL source zone characterization: small-scale sandbox experiments.
    Illman WA; Berg SJ; Liu X; Massi A
    Environ Sci Technol; 2010 Nov; 44(22):8609-14. PubMed ID: 20954708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks.
    Illman WA
    Ground Water; 2014; 52(5):659-84. PubMed ID: 24749939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydraulic Tomography: Continuity and Discontinuity of High-K and Low-K Zones.
    Hochstetler DL; Barrash W; Leven C; Cardiff M; Chidichimo F; Kitanidis PK
    Ground Water; 2016 Mar; 54(2):171-85. PubMed ID: 26096272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer.
    Bowling JC; Zheng C; Rodriguez AB; Harry DL
    J Contam Hydrol; 2006 May; 85(1-2):72-88. PubMed ID: 16574272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of groundwater flow patterns around a dual-screened groundwater circulation well.
    Johnson RL; Simon MA
    J Contam Hydrol; 2007 Aug; 93(1-4):188-202. PubMed ID: 17428573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies.
    Deng H; Dai Z; Wolfsberg AV; Ye M; Stauffer PH; Lu Z; Kwicklis E
    Chemosphere; 2013 Apr; 91(3):248-57. PubMed ID: 23260249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical assessments of recharge-dominated groundwater flow and transport in the nearshore reclamation area in western Taiwan.
    Ni CF; Li WC; Hsu SM; Lee IH; Lin CP
    Environ Monit Assess; 2019 Jan; 191(2):83. PubMed ID: 30659403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of strategies for performance monitoring of groundwater contamination at sites underlain by fractured bedrock.
    Chen Y; Smith L; Beckie R
    J Contam Hydrol; 2012 Jun; 134-135():37-53. PubMed ID: 22579666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical solution to transport in three-dimensional heterogeneous well capture zones.
    Indelman P; Lessoff SC; Dagan G
    J Contam Hydrol; 2006 Sep; 87(1-2):1-21. PubMed ID: 16844264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Hydraulic Conductivity Estimates from Various Approaches with Groundwater Flow Models.
    Sun D; Luo N; Vandenhoff A; McCall W; Zhao Z; Wang C; Rudolph DL; Illman WA
    Ground Water; 2024; 62(3):384-404. PubMed ID: 37605321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A potential-based inversion of unconfined steady-state hydraulic tomography.
    Cardiff M; Barrash W; Kitanidis PK; Malama B; Revil A; Straface S; Rizzo E
    Ground Water; 2009; 47(2):259-70. PubMed ID: 19178572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.
    Rolle M; Chiogna G; Hochstetler DL; Kitanidis PK
    J Contam Hydrol; 2013 Oct; 153():51-68. PubMed ID: 23994908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations.
    Rein A; Bauer S; Dietrich P; Beyer C
    J Contam Hydrol; 2009 Sep; 108(3-4):118-33. PubMed ID: 19682766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction.
    Goltz MN; Huang J; Close ME; Flintoft MJ; Pang L
    J Contam Hydrol; 2008 Sep; 100(3-4):127-36. PubMed ID: 18674844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examining the influence of heterogeneous porosity fields on conservative solute transport.
    Hu BX; Meerschaert MM; Barrash W; Hyndman DW; He C; Li X; Guo L
    J Contam Hydrol; 2009 Sep; 108(3-4):77-88. PubMed ID: 19683833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.