These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 22321018)

  • 21. Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex.
    Laudanski J; Edeline JM; Huetz C
    PLoS One; 2012; 7(11):e50539. PubMed ID: 23209771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response characteristics of primary auditory cortex neurons underlying perceptual asymmetry of ramped and damped sounds.
    Wang J; Qin L; Chimoto S; Tazunoki S; Sato Y
    Neuroscience; 2014 Jan; 256():309-21. PubMed ID: 24177068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds.
    Woolley SM; Fremouw TE; Hsu A; Theunissen FE
    Nat Neurosci; 2005 Oct; 8(10):1371-9. PubMed ID: 16136039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal processing and adaptation in the songbird auditory forebrain.
    Nagel KI; Doupe AJ
    Neuron; 2006 Sep; 51(6):845-59. PubMed ID: 16982428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The linearity of emergent spectro-temporal receptive fields in a model of auditory cortex.
    Coath M; Balaguer-Ballester E; Denham SL; Denham M
    Biosystems; 2008; 94(1-2):60-7. PubMed ID: 18616976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design.
    Klein DJ; Depireux DA; Simon JZ; Shamma SA
    J Comput Neurosci; 2000; 9(1):85-111. PubMed ID: 10946994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sustained firing in auditory cortex evoked by preferred stimuli.
    Wang X; Lu T; Snider RK; Liang L
    Nature; 2005 May; 435(7040):341-6. PubMed ID: 15902257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex.
    Klein DJ; Simon JZ; Depireux DA; Shamma SA
    J Comput Neurosci; 2006 Apr; 20(2):111-36. PubMed ID: 16518572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional organization of ferret auditory cortex.
    Bizley JK; Nodal FR; Nelken I; King AJ
    Cereb Cortex; 2005 Oct; 15(10):1637-53. PubMed ID: 15703254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex.
    Valentine PA; Eggermont JJ
    Hear Res; 2004 Oct; 196(1-2):119-33. PubMed ID: 15464309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex.
    Lakatos P; Shah AS; Knuth KH; Ulbert I; Karmos G; Schroeder CE
    J Neurophysiol; 2005 Sep; 94(3):1904-11. PubMed ID: 15901760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Encoding of virtual acoustic space stimuli by neurons in ferret primary auditory cortex.
    Mrsic-Flogel TD; King AJ; Schnupp JW
    J Neurophysiol; 2005 Jun; 93(6):3489-503. PubMed ID: 15659534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal nonlinearity during recovery from sequential inhibition by neurons in the cat primary auditory cortex.
    Nakamoto KT; Zhang J; Kitzes LM
    J Neurophysiol; 2006 Mar; 95(3):1897-907. PubMed ID: 16339004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response adaptation to broadband sounds in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Hear Res; 2006 Nov; 221(1-2):91-103. PubMed ID: 16982164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.
    Qiu A; Schreiner CE; EscabĂ­ MA
    J Neurophysiol; 2003 Jul; 90(1):456-76. PubMed ID: 12660353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectro-temporal receptive fields of midbrain auditory neurons in the rat obtained with frequency modulated stimulation.
    Poon PW; Yu PP
    Neurosci Lett; 2000 Jul; 289(1):9-12. PubMed ID: 10899396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.
    Yildiz IB; Mesgarani N; Deneve S
    J Neurosci; 2016 Dec; 36(49):12338-12350. PubMed ID: 27927954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive stimulus optimization for auditory cortical neurons.
    O'Connor KN; Petkov CI; Sutter ML
    J Neurophysiol; 2005 Dec; 94(6):4051-67. PubMed ID: 16135553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli.
    David SV; Mesgarani N; Fritz JB; Shamma SA
    J Neurosci; 2009 Mar; 29(11):3374-86. PubMed ID: 19295144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural codes in the thalamocortical auditory system: from artificial stimuli to communication sounds.
    Huetz C; Gourévitch B; Edeline JM
    Hear Res; 2011 Jan; 271(1-2):147-58. PubMed ID: 20116422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.