These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Relationship between flow-metabolism uncoupling and evolving axonal injury after experimental traumatic brain injury. Chen SF; Richards HK; Smielewski P; Johnström P; Salvador R; Pickard JD; Harris NG J Cereb Blood Flow Metab; 2004 Sep; 24(9):1025-36. PubMed ID: 15356423 [TBL] [Abstract][Full Text] [Related]
3. Diminution of metabolism/blood flow uncoupling following traumatic brain injury in rats in response to high-dose human albumin treatment. Ginsberg MD; Zhao W; Belayev L; Alonso OF; Liu Y; Loor JY; Busto R J Neurosurg; 2001 Mar; 94(3):499-509. PubMed ID: 11235957 [TBL] [Abstract][Full Text] [Related]
4. Influence of early posttraumatic hypothermia therapy on local cerebral blood flow and glucose metabolism after fluid-percussion brain injury. Zhao W; Alonso OF; Loor JY; Busto R; Ginsberg MD J Neurosurg; 1999 Mar; 90(3):510-9. PubMed ID: 10067921 [TBL] [Abstract][Full Text] [Related]
5. Uncoupling of local cerebral glucose metabolism and blood flow after acute fluid-percussion injury in rats. Ginsberg MD; Zhao W; Alonso OF; Loor-Estades JY; Dietrich WD; Busto R Am J Physiol; 1997 Jun; 272(6 Pt 2):H2859-68. PubMed ID: 9227566 [TBL] [Abstract][Full Text] [Related]
6. Transient middle cerebral artery occlusion by intraluminal suture: I. Three-dimensional autoradiographic image-analysis of local cerebral glucose metabolism-blood flow interrelationships during ischemia and early recirculation. Belayev L; Zhao W; Busto R; Ginsberg MD J Cereb Blood Flow Metab; 1997 Dec; 17(12):1266-80. PubMed ID: 9397026 [TBL] [Abstract][Full Text] [Related]
7. Endothelin receptor A antagonism reduces the extent of diffuse axonal injury in a rodent model of traumatic brain injury. Reynolds CA; Kallakuri S; Bagchi M; Schafer S; Kreipke CW; Rafols JA Neurol Res; 2011 Mar; 33(2):192-6. PubMed ID: 21801594 [TBL] [Abstract][Full Text] [Related]
8. Quantitative analysis of the relationship between intra- axonal neurofilament compaction and impaired axonal transport following diffuse traumatic brain injury. Marmarou CR; Walker SA; Davis CL; Povlishock JT J Neurotrauma; 2005 Oct; 22(10):1066-80. PubMed ID: 16238484 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional image analysis of brain glucose metabolism-blood flow uncoupling and its electrophysiological correlates in the acute ischemic penumbra following middle cerebral artery occlusion. Back T; Zhao W; Ginsberg MD J Cereb Blood Flow Metab; 1995 Jul; 15(4):566-77. PubMed ID: 7790406 [TBL] [Abstract][Full Text] [Related]
10. Impaired axoplasmic transport is the dominant injury induced by an impact acceleration injury device: an analysis of traumatic axonal injury in pyramidal tract and corpus callosum of rats. Kallakuri S; Li Y; Zhou R; Bandaru S; Zakaria N; Zhang L; Cavanaugh JM Brain Res; 2012 May; 1452():29-38. PubMed ID: 22472596 [TBL] [Abstract][Full Text] [Related]
11. Administration of the immunophilin ligand FK506 differentially attenuates neurofilament compaction and impaired axonal transport in injured axons following diffuse traumatic brain injury. Marmarou CR; Povlishock JT Exp Neurol; 2006 Feb; 197(2):353-62. PubMed ID: 16297913 [TBL] [Abstract][Full Text] [Related]
12. Impaired axonal transport and neurofilament compaction occur in separate populations of injured axons following diffuse brain injury in the immature rat. DiLeonardi AM; Huh JW; Raghupathi R Brain Res; 2009 Mar; 1263():174-82. PubMed ID: 19368848 [TBL] [Abstract][Full Text] [Related]
13. Changes in local cerebral blood flow, glucose utilization, and mitochondrial function following traumatic brain injury in rats. Jiang XB; Ohno K; Qian L; Tominaga B; Kuroiwa T; Nariai T; Hirakawa K Neurol Med Chir (Tokyo); 2000 Jan; 40(1):16-28; discussion 28-9. PubMed ID: 10721252 [TBL] [Abstract][Full Text] [Related]
14. Multiple immunostaining methods to detect traumatic axonal injury in the rat fluid-percussion brain injury model. Hoshino S; Kobayashi S; Furukawa T; Asakura T; Teramoto A Neurol Med Chir (Tokyo); 2003 Apr; 43(4):165-73; discussion 174. PubMed ID: 12760494 [TBL] [Abstract][Full Text] [Related]
15. Calpain inhibitor MDL-28170 reduces the functional and structural deterioration of corpus callosum following fluid percussion injury. Ai J; Liu E; Wang J; Chen Y; Yu J; Baker AJ J Neurotrauma; 2007 Jun; 24(6):960-78. PubMed ID: 17600513 [TBL] [Abstract][Full Text] [Related]
16. Differential effects of competitive (CGS19755) and non-competitive (MK 801) NMDA receptor antagonists upon local cerebral blood flow and local cerebral glucose utilisation in the rat. Sharkey J; Ritchie IM; Butcher SP; Kelly JS Brain Res; 1994 Jul; 651(1-2):27-36. PubMed ID: 7922575 [TBL] [Abstract][Full Text] [Related]
18. Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons. Stone JR; Singleton RH; Povlishock JT Exp Neurol; 2001 Dec; 172(2):320-31. PubMed ID: 11716556 [TBL] [Abstract][Full Text] [Related]
19. Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury. Büki A; Okonkwo DO; Povlishock JT J Neurotrauma; 1999 Jun; 16(6):511-21. PubMed ID: 10391367 [TBL] [Abstract][Full Text] [Related]
20. Cerebral blood flow, glucose metabolism and tunel-positive cells in the development of ischemia. Terada K; Inao S; Mizutani N; Tsukada H; Yoshida J Cerebrovasc Dis; 2001; 11(1):9-19. PubMed ID: 11173789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]