BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22321105)

  • 1. Sex-biased genetic component distribution among populations: additive genetic and maternal contributions to phenotypic differences among populations of Chinook salmon.
    Aykanat T; Bryden CA; Heath DD
    J Evol Biol; 2012 Apr; 25(4):682-90. PubMed ID: 22321105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative genetic and translocation experiments reveal genotype-by-environment effects on juvenile life-history traits in two populations of Chinook salmon (Oncorhynchus tshawytscha).
    Evans ML; Neff BD; Heath DD
    J Evol Biol; 2010 Apr; 23(4):687-98. PubMed ID: 20102438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process.
    Quinn TP; Kinnison MT; Unwin MJ
    Genetica; 2001; 112-113():493-513. PubMed ID: 11838785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dosage effects on heritability and maternal effects in diploid and triploid Chinook salmon (Oncorhynchus tshawytscha).
    Johnson RM; Shrimpton JM; Cho GK; Heath DD
    Heredity (Edinb); 2007 May; 98(5):303-10. PubMed ID: 17301740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in juvenile Chinook salmon (Oncorhynchus tshawytscha) transcription profiles among and within eight population crosses from British Columbia, Canada.
    Toews SD; Wellband KW; Dixon B; Heath DD
    Mol Ecol; 2019 Apr; 28(8):1890-1903. PubMed ID: 30663146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-sustaining populations, population sinks or aggregates of strays: chum (Oncorhynchus keta) and Chinook salmon (Oncorhynchus tshawytscha) in the Wood River system, Alaska.
    Lin JE; Hilborn R; Quinn TP; Hauser L
    Mol Ecol; 2011 Dec; 20(23):4925-37. PubMed ID: 22026559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candidate loci reveal genetic differentiation between temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha).
    O'Malley KG; Camara MD; Banks MA
    Mol Ecol; 2007 Dec; 16(23):4930-41. PubMed ID: 17971087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MHC genetic structure and divergence across populations of Chinook salmon (Oncorhynchus tshawytscha).
    Evans ML; Neff BD; Heath DD
    Heredity (Edinb); 2010 May; 104(5):449-59. PubMed ID: 19773808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heritability and Y-chromosome influence in the jack male life history of chinook salmon (Oncorhynchus tshawytscha).
    Heath DD; Rankin L; Bryden CA; Heath JW; Shrimpton JM
    Heredity (Edinb); 2002 Oct; 89(4):311-7. PubMed ID: 12242648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additive and non-additive genetic components of the jack male life history in Chinook salmon (Oncorhynchus tshawytscha).
    Forest AR; Semeniuk CA; Heath DD; Pitcher TE
    Genetica; 2016 Aug; 144(4):477-85. PubMed ID: 27450674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic basis of variation in morphological and life-history traits of a wild population of pink salmon.
    Funk WC; Tyburczy JA; Knudsen KL; Lindner KR; Allendorf FW
    J Hered; 2005; 96(1):24-31. PubMed ID: 15598713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MHC class IIB alleles contribute to both additive and nonadditive genetic effects on survival in Chinook salmon.
    Pitcher TE; Neff BD
    Mol Ecol; 2006 Aug; 15(9):2357-65. PubMed ID: 16842411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation.
    Garcia de Leaniz C; Fleming IA; Einum S; Verspoor E; Jordan WC; Consuegra S; Aubin-Horth N; Lajus D; Letcher BH; Youngson AF; Webb JH; Vøllestad LA; Villanueva B; Ferguson A; Quinn TP
    Biol Rev Camb Philos Soc; 2007 May; 82(2):173-211. PubMed ID: 17437557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of hydrology and waterway distance on population structure of Chinook salmon Oncorhynchus tshawytscha in a large river.
    Olsen JB; Beacham TD; Wetklo M; Seeb LW; Smith CT; Flannery BG; Wenburg JK
    J Fish Biol; 2010 Apr; 76(5):1128-48. PubMed ID: 20409166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. II. Adaptive maternal effects.
    Räsänen K; Laurila A; Merilä J
    Evolution; 2003 Feb; 57(2):363-71. PubMed ID: 12683532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Egg size and the adaptive capacity of early life history traits in Chinook salmon (
    Thorn MW; Morbey YE
    Evol Appl; 2018 Feb; 11(2):205-219. PubMed ID: 29387156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a chromosomal rearrangement responsible for producing "apparent" XY-female fall-run Chinook salmon in California.
    Williamson KS; Phillips R; May B
    J Hered; 2008; 99(5):483-90. PubMed ID: 18504255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Sex ratio control in pink salmon (Oncorhynchus gorbuscha) and chum salmon (O. keta) populations: the possible causes and mechanisms of changes in the sex ratio].
    Brykov VA; Kukhlevskiĭ AD; Shevliakov EA; Kinas NM; Zavarina LO
    Genetika; 2008 Jul; 44(7):906-12. PubMed ID: 18767538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex genetic architecture of population differences in adult lifespan of a beetle: nonadditive inheritance, gender differences, body size and a large maternal effect.
    Fox CW; Czesak ME; Wallin WG
    J Evol Biol; 2004 Sep; 17(5):1007-17. PubMed ID: 15312073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Genetic monitoring of pink salmon Oncorhynchus gorbuscha populations of northern coast of the Okhotsk Sea].
    Golovanov IS; Marchenko SL; Pustovoĭt SP
    Tsitol Genet; 2009; 43(6):18-27. PubMed ID: 20458973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.