These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 22321129)
1. Heavy metal stress can prime for herbivore-induced plant volatile emission. Winter TR; Borkowski L; Zeier J; Rostás M Plant Cell Environ; 2012 Jul; 35(7):1287-98. PubMed ID: 22321129 [TBL] [Abstract][Full Text] [Related]
2. Copper and herbivory lead to priming and synergism in phytohormones and plant volatiles in the absence of salicylate-jasmonate antagonism. Rostás M; Winter TR; Borkowski L; Zeier J Plant Signal Behav; 2013 Jun; 8(6):e24264. PubMed ID: 23518582 [TBL] [Abstract][Full Text] [Related]
3. Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. Hu L; Ye M; Erb M Plant Cell Environ; 2019 Mar; 42(3):959-971. PubMed ID: 30195252 [TBL] [Abstract][Full Text] [Related]
4. Maize developmental stage affects indirect and direct defense expression. Bosak EJ; Seidl-Adams IH; Zhu J; Tumlinson JH Environ Entomol; 2013 Dec; 42(6):1309-21. PubMed ID: 24280349 [TBL] [Abstract][Full Text] [Related]
5. Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects. von Mérey G; Veyrat N; Mahuku G; Valdez RL; Turlings TC; D'Alessandro M Phytochemistry; 2011 Oct; 72(14-15):1838-47. PubMed ID: 21658734 [TBL] [Abstract][Full Text] [Related]
6. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Schützendübel A; Polle A J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381 [TBL] [Abstract][Full Text] [Related]
7. Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Schmelz EA; Alborn HT; Banchio E; Tumlinson JH Planta; 2003 Feb; 216(4):665-73. PubMed ID: 12569409 [TBL] [Abstract][Full Text] [Related]
8. Priming by airborne signals boosts direct and indirect resistance in maize. Ton J; D'Alessandro M; Jourdie V; Jakab G; Karlen D; Held M; Mauch-Mani B; Turlings TC Plant J; 2007 Jan; 49(1):16-26. PubMed ID: 17144894 [TBL] [Abstract][Full Text] [Related]
9. The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack. Christensen SA; Nemchenko A; Borrego E; Murray I; Sobhy IS; Bosak L; DeBlasio S; Erb M; Robert CA; Vaughn KA; Herrfurth C; Tumlinson J; Feussner I; Jackson D; Turlings TC; Engelberth J; Nansen C; Meeley R; Kolomiets MV Plant J; 2013 Apr; 74(1):59-73. PubMed ID: 23279660 [TBL] [Abstract][Full Text] [Related]
10. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
11. Differential responses of sweetpotato peroxidases to heavy metals. Kim YH; Lee HS; Kwak SS Chemosphere; 2010 Sep; 81(1):79-85. PubMed ID: 20638101 [TBL] [Abstract][Full Text] [Related]
12. Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds? Holopainen JK Tree Physiol; 2011 Dec; 31(12):1356-77. PubMed ID: 22112623 [TBL] [Abstract][Full Text] [Related]
13. Defense of cabbages against herbivore cutworm Spodoptera litura under Cd stress and insect herbivory stress simultaneously. Guo Y; Chen J; Liao H; Wu K; Xiao Z; Duan Q; Wang J; Shu Y Environ Pollut; 2024 Oct; 358():124519. PubMed ID: 38986765 [TBL] [Abstract][Full Text] [Related]
14. Priming of Production in Maize of Volatile Organic Defence Compounds by the Natural Plant Activator cis-Jasmone. Oluwafemi S; Dewhirst SY; Veyrat N; Powers S; Bruce TJ; Caulfield JC; Pickett JA; Birkett MA PLoS One; 2013; 8(6):e62299. PubMed ID: 23840295 [TBL] [Abstract][Full Text] [Related]
15. Biotic and heavy metal stress response in plants: evidence for common signals. Mithöfer A; Schulze B; Boland W FEBS Lett; 2004 May; 566(1-3):1-5. PubMed ID: 15147858 [TBL] [Abstract][Full Text] [Related]