These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22321894)

  • 1. Prediction of HIV-1 protease/inhibitor affinity using RosettaLigand.
    Lemmon G; Kaufmann K; Meiler J
    Chem Biol Drug Des; 2012 Jun; 79(6):888-96. PubMed ID: 22321894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism.
    Meher BR; Wang Y
    J Mol Graph Model; 2015 Mar; 56():60-73. PubMed ID: 25562662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies.
    Meher BR; Wang Y
    J Phys Chem B; 2012 Feb; 116(6):1884-900. PubMed ID: 22239286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme entropy-enthalpy compensation in a drug-resistant variant of HIV-1 protease.
    King NM; Prabu-Jeyabalan M; Bandaranayake RM; Nalam MN; Nalivaika EA; Özen A; Haliloğlu T; Yilmaz NK; Schiffer CA
    ACS Chem Biol; 2012 Sep; 7(9):1536-46. PubMed ID: 22712830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of inhibitor binding on the structural stability and cooperativity of the HIV-1 protease.
    Todd MJ; Freire E
    Proteins; 1999 Aug; 36(2):147-56. PubMed ID: 10398363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E
    Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance.
    Hou T; Yu R
    J Med Chem; 2007 Mar; 50(6):1177-88. PubMed ID: 17300185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved prediction of HIV-1 protease-inhibitor binding energies by molecular dynamics simulations.
    Jenwitheesuk E; Samudrala R
    BMC Struct Biol; 2003 Apr; 3():2. PubMed ID: 12675950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.
    Jenwitheesuk E; Samudrala R
    Antivir Ther; 2005; 10(1):157-66. PubMed ID: 15751773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases.
    Sadiq SK; Wright D; Watson SJ; Zasada SJ; Stoica I; Coveney PV
    J Chem Inf Model; 2008 Sep; 48(9):1909-19. PubMed ID: 18710212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic basis of resistance to HIV-1 protease inhibition: calorimetric analysis of the V82F/I84V active site resistant mutant.
    Todd MJ; Luque I; Velázquez-Campoy A; Freire E
    Biochemistry; 2000 Oct; 39(39):11876-83. PubMed ID: 11009599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease.
    Gupta A; Jamal S; Goyal S; Jain R; Wahi D; Grover A
    BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S10. PubMed ID: 26695135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug pressure selected mutations in HIV-1 protease alter flap conformations.
    Galiano L; Ding F; Veloro AM; Blackburn ME; Simmerling C; Fanucci GE
    J Am Chem Soc; 2009 Jan; 131(2):430-1. PubMed ID: 19140783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of HIV-1 protease protein binding pockets.
    Ko GM; Reddy AS; Kumar S; Bailey BA; Garg R
    J Chem Inf Model; 2010 Oct; 50(10):1759-71. PubMed ID: 20925403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of 14 HIV protease mutants in complexes with indinavir.
    Chen X; Weber IT; Harrison RW
    J Mol Model; 2004 Dec; 10(5-6):373-81. PubMed ID: 15597206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting structural effects in HIV-1 protease mutant complexes with flexible ligand docking and protein side-chain optimization.
    Schaffer L; Verkhivker GM
    Proteins; 1998 Nov; 33(2):295-310. PubMed ID: 9779795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of potency of protease inhibitors using free energy simulations with polarizable quantum mechanics-based ligand charges and a hybrid water model.
    Das D; Koh Y; Tojo Y; Ghosh AK; Mitsuya H
    J Chem Inf Model; 2009 Dec; 49(12):2851-62. PubMed ID: 19928916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K; Hannongbua S; Feig M
    J Comput Chem; 2008 Apr; 29(5):673-85. PubMed ID: 17849388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.