These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 22322323)
1. Practical biocatalytic desymmetrization of meso-N-heterocyclic dicarboxamides and their application in the construction of aza-sugar containing nucleoside analogs. Chen P; Gao M; Wang DX; Zhao L; Wang MX Chem Commun (Camb); 2012 Apr; 48(29):3482-4. PubMed ID: 22322323 [TBL] [Abstract][Full Text] [Related]
2. Enantioselective biotransformations of racemic and meso pyrrolidine-2,5-dicarboxamides and their application in organic synthesis. Chen P; Gao M; Wang DX; Zhao L; Wang MX J Org Chem; 2012 Apr; 77(8):4063-72. PubMed ID: 22463383 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and application of enantioenriched functionalized α-tetrasubstituted α-amino acids from biocatalytic desymmetrization of prochiral α-aminomalonamides. Zhang LB; Wang DX; Zhao L; Wang MX J Org Chem; 2012 Jul; 77(13):5584-91. PubMed ID: 22712845 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of quaternary-carbon-containing and functionalized enantiopure pentanecarboxylic acids from biocatalytic desymmetrization of meso-cyclopentane-1,3-dicarboxamides. Ao YF; Wang DX; Zhao L; Wang MX Chem Asian J; 2015 Apr; 10(4):938-47. PubMed ID: 25331062 [TBL] [Abstract][Full Text] [Related]
5. An unusual beta-vinyl effect leading to high efficiency and enantioselectivity of the amidase, nitrile biotransformations for the preparation of enantiopure 3-arylpent-4-enoic acids and amides and their applications in synthesis. Gao M; Wang DX; Zheng QY; Wang MX J Org Chem; 2006 Dec; 71(25):9532-5. PubMed ID: 17137391 [TBL] [Abstract][Full Text] [Related]
6. Nitrile biotransformation for highly enantioselective synthesis of 3-substituted 2,2-dimethylcyclopropanecarboxylic acids and amides. Wang MX; Feng GQ J Org Chem; 2003 Jan; 68(2):621-4. PubMed ID: 12530896 [TBL] [Abstract][Full Text] [Related]
7. Highly efficient and enantioselective biotransformations of β-lactam carbonitriles and carboxamides and their synthetic applications. Leng DH; Wang DX; Huang ZT; Wang MX Org Biomol Chem; 2010 Oct; 8(20):4736-43. PubMed ID: 20721414 [TBL] [Abstract][Full Text] [Related]
8. Remarkable electronic and steric effects in the nitrile biotransformations for the preparation of enantiopure functionalized carboxylic acids and amides: implication for an unsaturated carbon-carbon bond binding domain of the amidase. Gao M; Wang DX; Zheng QY; Huang ZT; Wang MX J Org Chem; 2007 Aug; 72(16):6060-6. PubMed ID: 17604398 [TBL] [Abstract][Full Text] [Related]
9. Highly efficient and enantioselective biotransformations of racemic azetidine-2-carbonitriles and their synthetic applications. Leng DH; Wang DX; Pan J; Huang ZT; Wang MX J Org Chem; 2009 Aug; 74(16):6077-82. PubMed ID: 19627128 [TBL] [Abstract][Full Text] [Related]
10. Practical and convenient enzymatic synthesis of enantiopure alpha-amino acids and amides. Wang MX; Lin SJ J Org Chem; 2002 Sep; 67(18):6542-5. PubMed ID: 12201779 [TBL] [Abstract][Full Text] [Related]
11. Nitrile biotransformations for highly enantioselective synthesis of oxiranecarboxamides with tertiary and quaternary stereocenters; efficient chemoenzymatic approaches to enantiopure alpha-methylated serine and isoserine derivatives. Wang MX; Deng G; Wang DX; Zheng QY J Org Chem; 2005 Apr; 70(7):2439-44. PubMed ID: 15787529 [TBL] [Abstract][Full Text] [Related]
12. Nitrile biotransformations for the synthesis of highly enantioenriched beta-hydroxy and beta-amino acid and amide derivatives: a general and simple but powerful and efficient benzyl protection strategy to increase enantioselectivity of the amidase. Ma DY; Wang DX; Pan J; Huang ZT; Wang MX J Org Chem; 2008 Jun; 73(11):4087-91. PubMed ID: 18459810 [TBL] [Abstract][Full Text] [Related]
13. Nitrile biotransformations for the synthesis of enantiomerically enriched Baylis-Hillman adducts. Wang MX; Wu Y Org Biomol Chem; 2003 Feb; 1(3):535-40. PubMed ID: 12926256 [TBL] [Abstract][Full Text] [Related]
14. Practical synthesis of optically active alpha,alpha-disubstituted malonamic acids through asymmetric hydrolysis of malonamide derivatives with Rhodococcus sp. CGMCC 0497. Wu ZL; Li ZY J Org Chem; 2003 Mar; 68(6):2479-82. PubMed ID: 12636421 [TBL] [Abstract][Full Text] [Related]
15. Promiscuous (+)-γ-lactamase activity of an amidase from nitrile hydratase pathway for efficient synthesis of carbocyclic nucleosides intermediate. Li H; Zhu S; Zheng G Bioorg Med Chem Lett; 2018 Apr; 28(6):1071-1076. PubMed ID: 29486967 [TBL] [Abstract][Full Text] [Related]
16. Nitrile and amide biotransformations for the synthesis of enantiomerically pure 3-arylaziridine-2-carboxamide derivatives and their stereospecific ring-opening reactions. Wang JY; Wang DX; Pan J; Huang ZT; Wang MX J Org Chem; 2007 Nov; 72(24):9391-4. PubMed ID: 17958451 [TBL] [Abstract][Full Text] [Related]
17. Enantioselective biotransformations using rhodococci. Beard TM; Page MI Antonie Van Leeuwenhoek; 1998; 74(1-3):99-106. PubMed ID: 10068793 [TBL] [Abstract][Full Text] [Related]
18. Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Brady D; Beeton A; Zeevaart J; Kgaje C; van Rantwijk F; Sheldon RA Appl Microbiol Biotechnol; 2004 Mar; 64(1):76-85. PubMed ID: 14666389 [TBL] [Abstract][Full Text] [Related]
19. Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Fuller ME; Perreault N; Hawari J Lett Appl Microbiol; 2010 Sep; 51(3):313-8. PubMed ID: 20666987 [TBL] [Abstract][Full Text] [Related]
20. Biotransformation of amides to acids using a co-cross-linked enzyme aggregate of Rhodococcus erythropolis amidase. Park HJ; Uhm KN; Kim HK J Microbiol Biotechnol; 2010 Feb; 20(2):325-31. PubMed ID: 20208436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]