These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 22322408)
1. Estimating soil temperature using neighboring station data via multi-nonlinear regression and artificial neural network models. Bilgili M; Sahin B; Sangun L Environ Monit Assess; 2013 Jan; 185(1):347-58. PubMed ID: 22322408 [TBL] [Abstract][Full Text] [Related]
2. Advanced machine learning model for better prediction accuracy of soil temperature at different depths. Alizamir M; Kisi O; Ahmed AN; Mert C; Fai CM; Kim S; Kim NW; El-Shafie A PLoS One; 2020; 15(4):e0231055. PubMed ID: 32287272 [TBL] [Abstract][Full Text] [Related]
3. Modelling monthly mean air temperature using artificial neural network, adaptive neuro-fuzzy inference system and support vector regression methods: A case of study for Turkey. Yakut E; Süzülmüş S Network; 2020; 31(1-4):1-36. PubMed ID: 32397767 [TBL] [Abstract][Full Text] [Related]
4. Modeling seasonal variations of long-term soil CO Yılmaz G; Bilgili AV Environ Monit Assess; 2018 Jul; 190(8):486. PubMed ID: 30039438 [TBL] [Abstract][Full Text] [Related]
5. Analysis of urban effects on soil temperature in Ankara. Turkoglu N Environ Monit Assess; 2010 Oct; 169(1-4):439-50. PubMed ID: 19859823 [TBL] [Abstract][Full Text] [Related]
6. Estimation of daily dissolved oxygen concentration for river water quality using conventional regression analysis, multivariate adaptive regression splines, and TreeNet techniques. Nacar S; Mete B; Bayram A Environ Monit Assess; 2020 Nov; 192(12):752. PubMed ID: 33159587 [TBL] [Abstract][Full Text] [Related]
7. Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties. Mojid MA; Hossain ABMZ; Ashraf MA Environ Pollut; 2019 Dec; 255(Pt 2):113355. PubMed ID: 31668956 [TBL] [Abstract][Full Text] [Related]
8. Precipitable water modelling using artificial neural network in Çukurova region. Senkal O; Yıldız BY; Şahin M; Pestemalcı V Environ Monit Assess; 2012 Jan; 184(1):141-7. PubMed ID: 21374043 [TBL] [Abstract][Full Text] [Related]
9. Extreme learning machine for soil temperature prediction using only air temperature as input. Belouz K; Zereg S Environ Monit Assess; 2023 Jul; 195(8):962. PubMed ID: 37454387 [TBL] [Abstract][Full Text] [Related]
10. Coupling artificial neural network and sperm swarm optimization for soil temperature prediction at multiple depths. Sharafi M; Ghorbani MA; Barzegar R; Samadianfard S Environ Sci Pollut Res Int; 2024 Oct; 31(47):57903-57919. PubMed ID: 39302582 [TBL] [Abstract][Full Text] [Related]
11. An artificial neural network ensemble approach to generate air pollution maps. Van Roode S; Ruiz-Aguilar JJ; González-Enrique J; Turias IJ Environ Monit Assess; 2019 Nov; 191(12):727. PubMed ID: 31701254 [TBL] [Abstract][Full Text] [Related]
12. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States. Olyaie E; Banejad H; Chau KW; Melesse AM Environ Monit Assess; 2015 Apr; 187(4):189. PubMed ID: 25787167 [TBL] [Abstract][Full Text] [Related]
13. Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Arhami M; Kamali N; Rajabi MM Environ Sci Pollut Res Int; 2013 Jul; 20(7):4777-89. PubMed ID: 23292230 [TBL] [Abstract][Full Text] [Related]
14. Testing and application of simple semi-analytical models for soil temperature estimation and prediction in environmental assessments. Tsiros IX; Droulia F; Thoma E; Psiloglou B J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(9):837-841. PubMed ID: 28448749 [TBL] [Abstract][Full Text] [Related]
15. Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks. Bayram A; Kankal M; Onsoy H Environ Monit Assess; 2012 Jul; 184(7):4355-65. PubMed ID: 21814718 [TBL] [Abstract][Full Text] [Related]
16. [Comparative analysis of soil organic matter content based on different hyperspectral inversion models]. Luan FM; Zhang XL; Xiong HG; Zhang F; Wang F Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jan; 33(1):196-200. PubMed ID: 23586255 [TBL] [Abstract][Full Text] [Related]
17. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors. Heddam S; Kisi O Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629 [TBL] [Abstract][Full Text] [Related]
18. Modeling Soil Temperature for Different Days Using Novel Quadruplet Loss-Guided LSTM. Wang X; Li W; Li Q; Li X Comput Intell Neurosci; 2022; 2022():9016823. PubMed ID: 35222636 [TBL] [Abstract][Full Text] [Related]
19. An application of artificial neural network models to estimate air temperature data in areas with sparse network of meteorological stations. Chronopoulos KI; Tsiros IX; Dimopoulos IF; Alvertos N J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Dec; 43(14):1752-7. PubMed ID: 18988114 [TBL] [Abstract][Full Text] [Related]
20. Soil temperature forecasting using a hybrid artificial neural network in Florida subtropical grazinglands agro-ecosystems. Biazar SM; Shehadeh HA; Ghorbani MA; Golmohammadi G; Saha A Sci Rep; 2024 Jan; 14(1):1535. PubMed ID: 38233414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]