These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 22322530)

  • 41. Site-specific self-assembled liquid-gated ZnO nanowire transistors for sensing applications.
    Pachauri V; Vlandas A; Kern K; Balasubramanian K
    Small; 2010 Feb; 6(4):589-94. PubMed ID: 19842112
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly efficient photoelectrochemical hydrogen generation using a quantum dot coupled hierarchical ZnO nanowires array.
    Kim H; Yong K
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13258-64. PubMed ID: 24274430
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting.
    Qiu Y; Yan K; Deng H; Yang S
    Nano Lett; 2012 Jan; 12(1):407-13. PubMed ID: 22149105
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor.
    Xue X; Nie Y; He B; Xing L; Zhang Y; Wang ZL
    Nanotechnology; 2013 Jun; 24(22):225501. PubMed ID: 23633477
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Solution-grown 3D Cu2O networks for efficient solar water splitting.
    Kargar A; Partokia SS; Niu MT; Allameh P; Yang M; May S; Cheung JS; Sun K; Xu K; Wang D
    Nanotechnology; 2014 May; 25(20):205401. PubMed ID: 24784802
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A stamped PEDOT:PSS-silicon nanowire hybrid solar cell.
    Moiz SA; Nahhas AM; Um HD; Jee SW; Cho HK; Kim SW; Lee JH
    Nanotechnology; 2012 Apr; 23(14):145401. PubMed ID: 22433819
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.
    Shen X; Sun B; Liu D; Lee ST
    J Am Chem Soc; 2011 Dec; 133(48):19408-15. PubMed ID: 22035274
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting.
    Gonçalves RH; Leite LD; Leite ER
    ChemSusChem; 2012 Dec; 5(12):2341-7. PubMed ID: 23139181
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte.
    Solarska R; Jurczakowski R; Augustynski J
    Nanoscale; 2012 Mar; 4(5):1553-6. PubMed ID: 22290176
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.
    Varadhan P; Fu HC; Priante D; Retamal JR; Zhao C; Ebaid M; Ng TK; Ajia I; Mitra S; Roqan IS; Ooi BS; He JH
    Nano Lett; 2017 Mar; 17(3):1520-1528. PubMed ID: 28177248
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Upgraded silicon nanowires by metal-assisted etching of metallurgical silicon: a new route to nanostructured solar-grade silicon.
    Li X; Xiao Y; Bang JH; Lausch D; Meyer S; Miclea PT; Jung JY; Schweizer SL; Lee JH; Wehrspohn RB
    Adv Mater; 2013 Jun; 25(23):3187-91. PubMed ID: 23637063
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D highly efficient photonic micro concave-pit arrays for enhanced solar water splitting.
    Li M; Chen L; Zhou C; Jin C; Su Y; Zhang Y
    Nanoscale; 2019 Oct; 11(39):18071-18080. PubMed ID: 31506662
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flexible silver nanowire meshes for high-efficiency microtextured organic-silicon hybrid photovoltaics.
    Chen TG; Huang BY; Liu HW; Huang YY; Pan HT; Meng HF; Yu P
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6857-64. PubMed ID: 23167527
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Generation of fuel from CO2 saturated liquids using a p-Si nanowire ‖ n-TiO2 nanotube array photoelectrochemical cell.
    LaTempa TJ; Rani S; Bao N; Grimes CA
    Nanoscale; 2012 Apr; 4(7):2245-50. PubMed ID: 22373931
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of a photodiode coupled with a Si nanowire-FET on a plastic substrate.
    Kwak K; Cho K; Kim S
    Sensors (Basel); 2010; 10(10):9118-26. PubMed ID: 22163398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Zinc oxide nanowire rigid platforms on elastomeric substrates.
    Bendall JS; Graz I; Lacour SP
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3162-6. PubMed ID: 21740041
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanostructural transformation and formation of heterojunctions from Si nanowires.
    Wong TL; Cheng C; Li W; Fung KK; Wang N
    ACS Nano; 2010 Oct; 4(10):5559-64. PubMed ID: 20845917
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly active and enhanced photocatalytic silicon nanowire arrays.
    Wang FY; Yang QD; Xu G; Lei NY; Tsang YK; Wong NB; Ho JC
    Nanoscale; 2011 Aug; 3(8):3269-76. PubMed ID: 21717011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.