These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 22322803)
1. Glucose recognition by a supramolecular complex of boronic acid fluorophore with boronic acid-modified cyclodextrin in water. Kumai M; Kozuka S; Samizo M; Hashimoto T; Suzuki I; Hayashita T Anal Sci; 2012; 28(2):121-6. PubMed ID: 22322803 [TBL] [Abstract][Full Text] [Related]
2. Effects of cyclodextrins on intramolecular photoinduced electron transfer in a boronic acid fluorophore. Kano H; Tanoue D; Shimaoka H; Katano K; Hashimoto T; Kunugita H; Nanbu S; Hayashita T; Ema K Anal Sci; 2014; 30(6):643-8. PubMed ID: 24919668 [TBL] [Abstract][Full Text] [Related]
3. Effect of cyclodextrins on saccharide sensing function of a fluorescent phenylboronic acid in water. Ozawa R; Hashimoto T; Yamauchi A; Suzuki I; Smith BD; Hayashita T Anal Sci; 2008 Feb; 24(2):207-12. PubMed ID: 18270410 [TBL] [Abstract][Full Text] [Related]
4. A 2 : 2 stilbeneboronic acid-γ-cyclodextrin fluorescent ensemble highly selective for glucose in aqueous solutions. Wu X; Lin LR; Huang YJ; Li Z; Jiang YB Chem Commun (Camb); 2012 May; 48(36):4362-4. PubMed ID: 22447048 [TBL] [Abstract][Full Text] [Related]
5. Recognition of d-Glucose in Water with Excellent Sensitivity, Selectivity, and Chiral Selectivity Using γ-Cyclodextrin and Fluorescent Boronic Acid Inclusion Complexes Having a Suzuki Y; Mizuta Y; Mikagi A; Misawa-Suzuki T; Tsuchido Y; Sugaya T; Hashimoto T; Ema K; Hayashita T ACS Sens; 2023 Jan; 8(1):218-227. PubMed ID: 36537860 [TBL] [Abstract][Full Text] [Related]
6. Boronic acid fluorophore/beta-cyclodextrin complex sensors for selective sugar recognition in water. Tong AJ; Yamauchi A; Hayashita T; Zhang ZY; Smith BD; Teramae N Anal Chem; 2001 Apr; 73(7):1530-6. PubMed ID: 11321305 [TBL] [Abstract][Full Text] [Related]
7. Selective glucose recognition by boronic acid azoprobe/gamma-cyclodextrin complexes in water. Shimpuku C; Ozawa R; Sasaki A; Sato F; Hashimoto T; Yamauchi A; Suzuki I; Hayashita T Chem Commun (Camb); 2009 Apr; (13):1709-11. PubMed ID: 19294270 [TBL] [Abstract][Full Text] [Related]
8. Supramolecular Zn(II)-Dipicolylamine-Azobenzene-Aminocyclodextrin-ATP Complex: Design and ATP Recognition in Water. Minagawa S; Fujiwara S; Hashimoto T; Hayashita T Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925230 [TBL] [Abstract][Full Text] [Related]
9. A Pseudopolyrotaxane for Glucose-Responsive Insulin Release: The Effect of Binding Ability and Spatial Arrangement of Phenylboronic Acid Group. Seki T; Abe K; Egawa Y; Miki R; Juni K; Seki T Mol Pharm; 2016 Nov; 13(11):3807-3815. PubMed ID: 27715064 [TBL] [Abstract][Full Text] [Related]
10. Effect of Spacer Length in Pyrene-Modified-Phenylboronic Acid Probe/CyD Complexes on Fluorescence-based Recognition of Monosaccharides in Aqueous Solution. Tsuchido Y; Kojima S; Sugita K; Fujiwara S; Hashimoto T; Hayashita T Anal Sci; 2021 May; 37(5):721-726. PubMed ID: 33455966 [TBL] [Abstract][Full Text] [Related]
11. Selective Sugar Recognition by Anthracene-Type Boronic Acid Fluorophore/Cyclodextrin Supramolecular Complex Under Physiological pH Condition. Sugita K; Tsuchido Y; Kasahara C; Casulli MA; Fujiwara S; Hashimoto T; Hayashita T Front Chem; 2019; 7():806. PubMed ID: 31828059 [TBL] [Abstract][Full Text] [Related]
12. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH. Hosseinzadeh R; Mohadjerani M; Pooryousef M; Eslami A; Emami S Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():53-60. PubMed ID: 25748592 [TBL] [Abstract][Full Text] [Related]
13. Selective potassium ion recognition by benzo-15-crown-5 fluoroionophore/gamma-cyclodextrin complex sensors in water. Yamauchi A; Hayashita T; Kato A; Nishizawa S; Watanabe M; Teramae N Anal Chem; 2000 Dec; 72(23):5841-6. PubMed ID: 11128945 [TBL] [Abstract][Full Text] [Related]
14. Pseudorotaxane-like supramolecular complex of coenzyme Q10 with gamma-cyclodextrin formed by solubility method. Nishimura K; Higashi T; Yoshimatsu A; Hirayama F; Uekama K; Arima H Chem Pharm Bull (Tokyo); 2008 May; 56(5):701-6. PubMed ID: 18451562 [TBL] [Abstract][Full Text] [Related]
15. Aminophenylboronic acid polymer nanoparticles for quantitation of glucose and for insulin release. Hsieh HH; Ho LC; Chang HT Anal Bioanal Chem; 2016 Sep; 408(24):6557-65. PubMed ID: 27531029 [TBL] [Abstract][Full Text] [Related]
16. The formation of an inclusion complex between a metabolite of ginsenoside, compound K and γ-cyclodextrin and its dissolution characteristics. Igami K; Ozawa M; Inoue S; Iohara D; Miyazaki T; Shinoda M; Anraku M; Hirayama F; Uekama K J Pharm Pharmacol; 2016 May; 68(5):646-54. PubMed ID: 26255976 [TBL] [Abstract][Full Text] [Related]
17. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor. Wu Y; Guo H; James TD; Zhao J J Org Chem; 2011 Jul; 76(14):5685-95. PubMed ID: 21619028 [TBL] [Abstract][Full Text] [Related]
18. Designed boronate ligands for glucose-selective holographic sensors. Yang X; Lee MC; Sartain F; Pan X; Lowe CR Chemistry; 2006 Nov; 12(33):8491-7. PubMed ID: 16906615 [TBL] [Abstract][Full Text] [Related]
19. A new class of fluorescent boronic acids that have extraordinarily high affinities for diols in aqueous solution at physiological pH. Cheng Y; Ni N; Yang W; Wang B Chemistry; 2010 Dec; 16(45):13528-38. PubMed ID: 20938931 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence response mechanism of D-glucose selectivity for supramolecular probes composed of phenylboronic-acid-modified beta-cyclodextrin and styrylpyridinium dyes. Suzuki I; Yamauchi A; Sakashita Y; Hirose K; Miura T; Hayashita T Anal Sci; 2007 Oct; 23(10):1167-71. PubMed ID: 17928662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]