BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22322876)

  • 1. Effects of H₂S on myogenic responses in rat cerebral arterioles.
    Liu L; Liu H; Sun D; Qiao W; Qi Y; Sun H; Yan C
    Circ J; 2012; 76(4):1012-9. PubMed ID: 22322876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of endothelial nitric oxide and smooth muscle potassium channels in cerebral arteriolar dilation in response to acidosis.
    Horiuchi T; Dietrich HH; Hongo K; Goto T; Dacey RG
    Stroke; 2002 Mar; 33(3):844-9. PubMed ID: 11872913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth-dependent changes in the contribution of carbon monoxide to arteriolar function.
    Samora JB; Goodwill AG; Frisbee JC; Boegehold MA
    J Vasc Res; 2010; 47(1):23-34. PubMed ID: 19672105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells.
    Lim JJ; Liu YH; Khin ES; Bian JS
    Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1261-70. PubMed ID: 18787076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelium-independent constriction of isolated, pressurized arterioles by Nomega-nitro-L-arginine methyl ester (L-NAME).
    Murphy TV; Kotecha N; Hill MA
    Br J Pharmacol; 2007 Jul; 151(5):602-9. PubMed ID: 17471179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of potassium channels in regulation of brain arteriolar tone: comparison of cerebrum versus brain stem.
    Horiuchi T; Dietrich HH; Tsugane S; Dacey RG
    Stroke; 2001 Jan; 32(1):218-24. PubMed ID: 11136940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats.
    Nakazawa T; Mori A; Saito M; Sakamoto K; Nakahara T; Ishii K
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Feb; 376(6):423-30. PubMed ID: 18092153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exogenous hydrogen sulfide inhibits superoxide formation, NOX-1 expression and Rac1 activity in human vascular smooth muscle cells.
    Muzaffar S; Shukla N; Bond M; Newby AC; Angelini GD; Sparatore A; Del Soldato P; Jeremy JY
    J Vasc Res; 2008; 45(6):521-8. PubMed ID: 18463417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nicorandil protects pial arterioles from endothelial dysfunction induced by smoking in rats.
    Iwata K; Iida H; Iida M; Takenaka M; Tanabe K; Fukuoka N; Uchida M
    J Neurosurg Anesthesiol; 2013 Oct; 25(4):392-8. PubMed ID: 23660509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway.
    Jin S; Teng X; Xiao L; Xue H; Guo Q; Duan X; Chen Y; Wu Y
    Exp Biol Med (Maywood); 2017 Dec; 242(18):1831-1841. PubMed ID: 28971696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide mediated endothelium-dependent relaxation induced by glibenclamide in rat isolated aorta.
    Chan W; Yao X; Ko W; Huang Y
    Cardiovasc Res; 2000 Apr; 46(1):180-7. PubMed ID: 10727666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resveratrol, a component of red wine, elicits dilation of isolated porcine retinal arterioles: role of nitric oxide and potassium channels.
    Nagaoka T; Hein TW; Yoshida A; Kuo L
    Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4232-9. PubMed ID: 17724212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of Hydrogen Sulfide in Endothelium-Derived Relaxing Factor-Mediated Responses in Rat Cerebral Arteries.
    Wang M; Hu Y; Fan Y; Guo Y; Chen F; Chen S; Li Q; Chen Z
    J Vasc Res; 2016; 53(3-4):172-185. PubMed ID: 27732975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An endothelium-derived hyperpolarizing factor-like factor moderates myogenic constriction of mesenteric resistance arteries in the absence of endothelial nitric oxide synthase-derived nitric oxide.
    Scotland RS; Chauhan S; Vallance PJ; Ahluwalia A
    Hypertension; 2001 Oct; 38(4):833-9. PubMed ID: 11641295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed.
    Pimentel AM; Costa CA; Carvalho LC; Brandão RM; Rangel BM; Tano T; Soares de Moura R; Resende AC
    Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2+-activated K+ channels.
    Miura H; Liu Y; Gutterman DD
    Circulation; 1999 Jun; 99(24):3132-8. PubMed ID: 10377076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute antihypertensive action of Tempol in the spontaneously hypertensive rat.
    Chen X; Patel K; Connors SG; Mendonca M; Welch WJ; Wilcox CS
    Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3246-53. PubMed ID: 17933967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EDHF-mediated rapid restoration of hypotensive response to acetylcholine after chronic, but not acute, nitric oxide synthase inhibition in rats.
    Desai KM; Gopalakrishnan V; Hiebert LM; McNeill JR; Wilson TW
    Eur J Pharmacol; 2006 Sep; 546(1-3):120-6. PubMed ID: 16876156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basal nitric oxide release differentially modulates vasodilations by pinacidil and levcromakalim in goat coronary artery.
    Deka DK; Raviprakash V; Mishra SK
    Eur J Pharmacol; 1998 May; 348(1):11-23. PubMed ID: 9650826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.