These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22323390)

  • 1. Evaluation of a bio-based hydrophobic cellulose laurate film as biomaterial--study on biodegradation and cytocompatibility.
    Crépy L; Monchau F; Chai F; Raoul G; Hivart P; Hildebrand HF; Martin P; Joly N
    J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):1000-8. PubMed ID: 22323390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mussel-inspired cellulose-based adhesive with biocompatibility and strong mechanical strength via metal coordination.
    Tang Z; Zhao M; Wang Y; Zhang W; Zhang M; Xiao H; Huang L; Chen L; Ouyang X; Zeng H; Wu H
    Int J Biol Macromol; 2020 Feb; 144():127-134. PubMed ID: 31837365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect of bacterial cellulose reinforcement and succinic acid crosslinking on the properties of agar.
    Belay M; Tyeb S; Rathore K; Kumar M; Verma V
    Int J Biol Macromol; 2020 Dec; 165(Pt B):3115-3122. PubMed ID: 33736294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration.
    An SJ; Lee SH; Huh JB; Jeong SI; Park JS; Gwon HJ; Kang ES; Jeong CM; Lim YM
    Int J Mol Sci; 2017 Oct; 18(11):. PubMed ID: 29068426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride.
    Abdulkhani A; Hojati Marvast E; Ashori A; Hamzeh Y; Karimi AN
    Int J Biol Macromol; 2013 Nov; 62():379-86. PubMed ID: 24076203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acid-based polyurethane films for wound dressing applications.
    Gultekin G; Atalay-Oral C; Erkal S; Sahin F; Karastova D; Tantekin-Ersolmaz SB; Guner FS
    J Mater Sci Mater Med; 2009 Jan; 20(1):421-31. PubMed ID: 18839285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and cytocompatibility evaluation for hydrosoluble phosphorous acid-derivatized cellulose as tissue engineering scaffold material.
    Petreus T; Stoica BA; Petreus O; Goriuc A; Cotrutz CE; Antoniac IV; Barbu-Tudoran L
    J Mater Sci Mater Med; 2014 Apr; 25(4):1115-27. PubMed ID: 24481532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel biodegradable films and scaffolds of chitosan blended with poly(3-hydroxybutyrate).
    Cao W; Wang A; Jing D; Gong Y; Zhao N; Zhang X
    J Biomater Sci Polym Ed; 2005; 16(11):1379-94. PubMed ID: 16370239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and Characterization of Shape Memory (Meth)Acrylate Co-Polymers and their Cytocompatibility In Vitro.
    Song L; Hu W; Wang G; Zhang H; Niu G; Cao H; Yang H; Zhu S
    J Biomater Sci Polym Ed; 2011; 22(1-3):1-17. PubMed ID: 20557691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.
    Liu Y; Li Y; Yang G; Zheng X; Zhou S
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4118-26. PubMed ID: 25647407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular structure and properties of high strength regenerated cellulose films.
    Liu S; Zhang L; Sun Y; Lin Y; Zhang X; Nishiyama Y
    Macromol Biosci; 2009 Jan; 9(1):29-35. PubMed ID: 18781557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility.
    Zhijiang C; Yi X; Haizheng Y; Jia J; Liu Y
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():757-67. PubMed ID: 26478369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application.
    Wang X; Cheng F; Liu J; Smått JH; Gepperth D; Lastusaari M; Xu C; Hupa L
    Acta Biomater; 2016 Dec; 46():286-298. PubMed ID: 27646503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications.
    Khan S; Ul-Islam M; Ullah MW; Israr M; Jang JH; Park JK
    Int J Biol Macromol; 2018 Feb; 107(Pt A):865-873. PubMed ID: 28935538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films.
    El Miri N; Abdelouahdi K; Barakat A; Zahouily M; Fihri A; Solhy A; El Achaby M
    Carbohydr Polym; 2015 Sep; 129():156-67. PubMed ID: 26050901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture.
    Tang A; Li J; Li J; Zhao S; Liu W; Liu T; Wang J; Liu Y
    J Biomater Sci Polym Ed; 2019 Jul; 30(10):797-814. PubMed ID: 30940007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gelatin modified ultrathin silk fibroin films for enhanced proliferation of cells.
    Yang L; Yaseen M; Zhao X; Coffey P; Pan F; Wang Y; Xu H; Webster J; Lu JR
    Biomed Mater; 2015 Mar; 10(2):025003. PubMed ID: 25784671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preparation for and study on the property of medical bacterial cellulose].
    Li Z; Yan Z; Chen S; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):164-9. PubMed ID: 22404031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of using multiscale corn husk fiber as reinforcing filler in cornstarch-based biocomposites.
    Ibrahim MIJ; Sapuan SM; Zainudin ES; Zuhri MYM
    Int J Biol Macromol; 2019 Oct; 139():596-604. PubMed ID: 31381916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.