These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22323625)

  • 1. Training in a ballistic task but not a visuomotor task increases responses to stimulation of human corticospinal axons.
    Giesebrecht S; van Duinen H; Todd G; Gandevia SC; Taylor JL
    J Neurophysiol; 2012 May; 107(9):2485-92. PubMed ID: 22323625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute Strength Training Increases Responses to Stimulation of Corticospinal Axons.
    Nuzzo JL; Barry BK; Gandevia SC; Taylor JL
    Med Sci Sports Exerc; 2016 Jan; 48(1):139-50. PubMed ID: 26258855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticomotor excitability and plasticity following complex visuomotor training in young and old adults.
    Cirillo J; Todd G; Semmler JG
    Eur J Neurosci; 2011 Dec; 34(11):1847-56. PubMed ID: 22004476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.
    Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR
    J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor imagery of foot dorsiflexion and gait: effects on corticospinal excitability.
    Bakker M; Overeem S; Snijders AH; Borm G; van Elswijk G; Toni I; Bloem BR
    Clin Neurophysiol; 2008 Nov; 119(11):2519-27. PubMed ID: 18838294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balance training and ballistic strength training are associated with task-specific corticospinal adaptations.
    Schubert M; Beck S; Taube W; Amtage F; Faist M; Gruber M
    Eur J Neurosci; 2008 Apr; 27(8):2007-18. PubMed ID: 18412622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time course of corticospinal excitability in reaction time and self-paced movements.
    Chen R; Yaseen Z; Cohen LG; Hallett M
    Ann Neurol; 1998 Sep; 44(3):317-25. PubMed ID: 9749597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation at the cervicomedullary junction in human subjects.
    Taylor JL
    J Electromyogr Kinesiol; 2006 Jun; 16(3):215-23. PubMed ID: 16125974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive stimulation of human corticospinal axons innervating leg muscles.
    Martin PG; Butler JE; Gandevia SC; Taylor JL
    J Neurophysiol; 2008 Aug; 100(2):1080-6. PubMed ID: 18509069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical and reticular contributions to human precision and power grip.
    Tazoe T; Perez MA
    J Physiol; 2017 Apr; 595(8):2715-2730. PubMed ID: 27891607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task-dependent changes of motor cortical network excitability during precision grip compared to isolated finger contraction.
    Kouchtir-Devanne N; Capaday C; Cassim F; Derambure P; Devanne H
    J Neurophysiol; 2012 Mar; 107(5):1522-9. PubMed ID: 22157124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient motor evoked potential suppression following a complex sensorimotor task.
    McDonnell MN; Ridding MC
    Clin Neurophysiol; 2006 Jun; 117(6):1266-72. PubMed ID: 16600678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans.
    Lévénez M; Garland SJ; Klass M; Duchateau J
    J Neurophysiol; 2008 Feb; 99(2):554-63. PubMed ID: 18046002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakdown in central motor control can be attenuated by motor practice and neuro-modulation of the primary motor cortex.
    Teo WP; Rodrigues JP; Mastaglia FL; Thickbroom GW
    Neuroscience; 2012 Sep; 220():11-8. PubMed ID: 22750241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability.
    Carroll TJ; Lee M; Hsu M; Sayde J
    J Appl Physiol (1985); 2008 Jun; 104(6):1656-64. PubMed ID: 18403447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ipsilateral corticospinal responses to ballistic training are similar for various intensities and timings of TMS.
    Poh E; Riek S; Carroll TJ
    Acta Physiol (Oxf); 2013 Feb; 207(2):385-96. PubMed ID: 23082845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Premovement facilitation of corticospinal excitability before simple and sequential movement.
    Hiraoka K; Kamata N; Matsugi A; Iwata A
    Percept Mot Skills; 2010 Aug; 111(1):129-40. PubMed ID: 21058594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered corticospinal function during movement preparation in humans with spinal cord injury.
    Federico P; Perez MA
    J Physiol; 2017 Jan; 595(1):233-245. PubMed ID: 27485306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Four Weeks of Strength Training on the Corticomotoneuronal Pathway.
    Nuzzo JL; Barry BK; Jones MD; Gandevia SC; Taylor JL
    Med Sci Sports Exerc; 2017 Nov; 49(11):2286-2296. PubMed ID: 28692630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor imagery beyond the joint limits: a transcranial magnetic stimulation study.
    Bufalari I; Sforza A; Cesari P; Aglioti SM; Fourkas AD
    Biol Psychol; 2010 Oct; 85(2):283-90. PubMed ID: 20688131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.