These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 22323724)
1. Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration. Lee DC; Vazquez-Chona FR; Ferrell WD; Tam BM; Jones BW; Marc RE; Moritz OL J Neurosci; 2012 Feb; 32(6):2121-8. PubMed ID: 22323724 [TBL] [Abstract][Full Text] [Related]
2. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. Tam BM; Moritz OL J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341 [TBL] [Abstract][Full Text] [Related]
3. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light. Zhang R; Oglesby E; Marsh-Armstrong N Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367 [TBL] [Abstract][Full Text] [Related]
4. Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa. Bogéa TH; Wen RH; Moritz OL Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7947-55. PubMed ID: 26720441 [TBL] [Abstract][Full Text] [Related]
5. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Tam BM; Moritz OL Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3234-41. PubMed ID: 16877386 [TBL] [Abstract][Full Text] [Related]
6. Autophagy in Wen RH; Stanar P; Tam B; Moritz OL Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014 [TBL] [Abstract][Full Text] [Related]
7. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Parfitt DA; Aguila M; McCulley CH; Bevilacqua D; Mendes HF; Athanasiou D; Novoselov SS; Kanuga N; Munro PM; Coffey PJ; Kalmar B; Greensmith L; Cheetham ME Cell Death Dis; 2014 May; 5(5):e1236. PubMed ID: 24853414 [TBL] [Abstract][Full Text] [Related]
8. Xenopus laevis tadpoles can regenerate neural retina lost after physical excision but cannot regenerate photoreceptors lost through targeted ablation. Lee DC; Hamm LM; Moritz OL Invest Ophthalmol Vis Sci; 2013 Mar; 54(3):1859-67. PubMed ID: 23425694 [TBL] [Abstract][Full Text] [Related]
9. Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model. Orlans HO; Barnard AR; Patrício MI; McClements ME; MacLaren RE Hum Gene Ther; 2020 Jul; 31(13-14):730-742. PubMed ID: 32394751 [TBL] [Abstract][Full Text] [Related]
10. A Pro23His mutation alters prenatal rod photoreceptor morphology in a transgenic swine model of retinitis pigmentosa. Scott PA; Fernandez de Castro JP; Kaplan HJ; McCall MA Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2452-9. PubMed ID: 24618321 [TBL] [Abstract][Full Text] [Related]
11. ATF6 is required for efficient rhodopsin clearance and retinal homeostasis in the P23H rho retinitis pigmentosa mouse model. Lee EJ; Chan P; Chea L; Kim K; Kaufman RJ; Lin JH Sci Rep; 2021 Aug; 11(1):16356. PubMed ID: 34381136 [TBL] [Abstract][Full Text] [Related]
12. Opsin localization and rhodopsin photochemistry in a transgenic mouse model of retinitis pigmentosa. Wu TH; Ting TD; Okajima TI; Pepperberg DR; Ho YK; Ripps H; Naash MI Neuroscience; 1998 Dec; 87(3):709-17. PubMed ID: 9758235 [TBL] [Abstract][Full Text] [Related]
13. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration. Viringipurampeer IA; Gregory-Evans CY; Metcalfe AL; Bashar E; Moritz OL; Gregory-Evans K Mol Neurobiol; 2019 Mar; 56(3):1637-1652. PubMed ID: 29911255 [TBL] [Abstract][Full Text] [Related]
14. Mislocalization and degradation of human P23H-rhodopsin-GFP in a knockin mouse model of retinitis pigmentosa. Price BA; Sandoval IM; Chan F; Simons DL; Wu SM; Wensel TG; Wilson JH Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9728-36. PubMed ID: 22110080 [TBL] [Abstract][Full Text] [Related]
15. Retinal degeneration in humanized mice expressing mutant rhodopsin under the control of the endogenous murine promoter. Liu X; Jia R; Meng X; Li Y; Yang L Exp Eye Res; 2022 Feb; 215():108893. PubMed ID: 34919893 [TBL] [Abstract][Full Text] [Related]
16. Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa. Orlans HO; Barnard AR; MacLaren RE Exp Eye Res; 2020 Jan; 190():107895. PubMed ID: 31816293 [TBL] [Abstract][Full Text] [Related]
17. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa. Streichert LC; Birnbach CD; Reh TA J Neurobiol; 1999 Jun; 39(4):475-90. PubMed ID: 10380070 [TBL] [Abstract][Full Text] [Related]
18. Wheel running exercise protects against retinal degeneration in the I307N rhodopsin mouse model of inducible autosomal dominant retinitis pigmentosa. Zhang X; Girardot PE; Sellers JT; Li Y; Wang J; Chrenek MA; Wu W; Skelton H; Nickerson JM; Pardue MT; Boatright JH Mol Vis; 2019; 25():462-476. PubMed ID: 31523123 [TBL] [Abstract][Full Text] [Related]
19. Retinal cAMP levels during the progression of retinal degeneration in rhodopsin P23H and S334ter transgenic rats. Traverso V; Bush RA; Sieving PA; Deretic D Invest Ophthalmol Vis Sci; 2002 May; 43(5):1655-61. PubMed ID: 11980887 [TBL] [Abstract][Full Text] [Related]